AFS-3 Programmer’s Reference:

Specification for the Rx Remote Procedure
Call Facility

Edward R. Zayas

Transarc Corporation

Version 1.2 of 28 August 1991 10:11
(©Copyright 1991 Transarc Corporation
All Rights Reserved
FS-00-D164

Rx Specification

Contents

1 Overview 1
1.1 Introduction 1
1.2 Basic Concepts 1

1.2.1 Security 2
1.2.2 Services e 2
1.2.3 Connections 3
1.24 Peers 3
1.25 Calls 3
1.26 Quotas 4
1.2.7 Packet Skew 4
1.2.8 Multicasting oo 4
1.3 Scope 4
1.4 Document Layout o 5)
1.5 Related Documents 5

2 The LWP Lightweight Process Package 7
2.1 Introduction 7
2.2 Description 8

22.1 LWP Overview 8
222 Locking 11
223 IOMGR 13
224 Timer 14
225 Fast Time. 15
2.2.6 Preemption 15
2.3 Imterface Specifications L L 16
231 LWP 16
2.3.1.1 LWP _InitializeProcessSupport 16

2.3.1.2 LWP _TerminateProcessSupport 17

2.3.1.3 LWP CreateProcess 17
2.3.1.4 LWP_DestroyProcess 18

2.3.1.5 LWP_WaitProcess 19
2.3.1.6 LWP_MwaitProcess 19

Table of Contents

i August 28, 1991 10:38

Rx Specification

2.3.2

2.3.3

2.3.4

2.3.5

2.3.6

2.3.1.7 LWP SignalProcess 20
2.3.1.8 LWP_NoYieldSignal 21
2.3.1.9 LWP DispatchProcess 21
2.3.1.10 LWP_CurrentProcess 22
2.3.1.11 LWP_ActiveProcess 22
2.3.1.12 LWP_StackUsed 22
2.3.1.13 LWP_NewRock 23
2.3.1.14 LWP_GetRock 24

Locking 24
2.3.2.1 LocklInit 24
2.3.2.2 ObtainReadLock 25
2.3.2.3 ObtainWriteLock 25
2.3.2.4 ObtainSharedLock 26
2.3.2.5 ReleaseReadLock 27
2.3.2.6 ReleaseWriteLock 27
2.3.2.7 ReleaseSharedLock 28
2.3.2.8 CheckLock 28
2.3.2.9 BoostLock 29
2.3.2.10 UnboostLock 29

IOMGR e 30
2.3.3.1 IOMGR. Initialize 30
2.3.3.2 IOMGR_Finalize 31
2.3.3.3 IOMGRSelect 31
2.3.34 IOMGR.Signal 32
2.3.3.5 IOMGR_CancelSignal 32
2336 IOMGRSleep 33

Timer 33
2.34.1 TMlInit 34
2342 TM.Final 34
2343 TMlnsert 35
2344 TMRescano 35
2.3.45 TM_GetExpired 36
2.3.4.6 TM_GetEarliest 36
2347 TMeql 37

Fast Time o 37
23.5.1 FTlInit 37
2.3.5.2 FT GetTimeOfDay 38

Preemptiono 39
2.3.6.1 PRE_InitPreempt 39
2.3.6.2 PRE_EndPreempt 39
2.3.6.3 PRE_PreemptMe 40

Table of Contents ii August 28, 1991 10:38

Rx Specification

2.3.6.4 PRE_BeginCritical 40

2.3.6.5 PRE_EndCritical 41

3 Rxkad. 42
3.1 Imtroduction 42
3.2 Definitions 42
3.3 Exported Objects 43
3.3.1 Server-Side Mechanisms 43
3.3.1.1 Security Operations 43

3.3.1.2 Security Object 44

3.3.2 Client-Side Mechanisms 44
3.3.2.1 Security Operations 44

3.3.2.2 Security Object 45

4 Rz Support Packages 47
4.1 Introduction 47
4.2 The rr_queue Package o o0 47
421 struct queue 48
4.2.2 Internal Operations 48
4221 _Q(): Coerce type to a queue element 48

4222 _QA(): Add a queue element before/after another element 48

4223 _QR(): Remove a queue element 49

4224 _QS(): Splice two queues together 49

4.2.3 External Operations 49
4.2.3.1 queue_Init(): Initialize a queue header 49

4.2.3.2 queue_Prepend(): Put element at the head of a queue . 49
4.2.3.3 queue_Append(): Put an element a the tail of a queue . 50
4.2.3.4 queue_InsertBefore(): Insert a queue element before an-

other element 50
4.2.3.5 queue_InsertAfter(): Insert a queue element after an-
other element oL 50

4.2.3.6 queue_SplicePrepend(): Splice one queue before another 50
4.2.3.7 queue_SpliceAppend(): Splice one queue after another . 50
4.2.3.8 queue_Replace(): Replace the contents of a queue with

that of another 51
4239 queue_Remove(): Remove an element from its queue . . 51
4.2.3.10 queue_MoveAppend(): Move an element from its queue

to the end of another queue 51
4.2.3.11 queue_MovePrepend(): Move an element from its queue

to the head of another queve o1
4.2.3.12 queue_First(): Return the first element of a queue, co-

erced to a particular type 52

Table of Contents iii August 28, 1991 10:38

Rx Specification

4.2.3.13
4.2.3.14
4.2.3.15

4.2.3.16
4.2.3.17
4.2.3.18
4.2.3.19
4.2.3.20
4.2.3.21
4.2.3.22

4.2.3.23

queue_Last(): Return the last element of a queue, co-
erced to a particular type
queue_Next(): Return the next element of a queue, co-
erced to a particular type
queue_Prev(): Return the next element of a queue, co-
erced to a particular type
queue_IsEmpty(): Is the given queue empty?
queue_IsNotEmpty(): Is the given queue not empty? . .
queue_IsOnQueue(): Is an element currently queued? . .
queue_IsFirst(): Is an element the first on a queue? . . .
queue_IsLast(): Is an element the last on a queue?
queue_IsEnd(): Is an element the end of a queue?
queue_Scan(): for loop test for scanning a queue in a
forward direction L.
queue_ScanBackwards(): for loop test for scanning a
queue in a reverse direction

4.3 The rz_clock Package
4.3.1 struct clock
4.3.2 clockmUpdates
4.3.3 Operations e

4.3.3.1
4.3.3.2
4.3.3.3
4.3.3.4

4.3.3.5

4.3.3.6

4.3.3.7
4.3.3.8

4.3.3.9

4.3.3.10
4.3.3.11
4.3.3.12
4.3.3.13
4.3.3.14
4.3.3.15
4.3.3.16

clock_Init(): Initialize the clock package
clock_UpdateTime(): Compute the current time
clock_GetTime(): Return the current clock time
clock_Sec(): Get the current clock time, truncated to
seconds ... Lo
clock_ElapsedTime(): Measure milliseconds between two
given clock values 0oL
clock_Advance(): Advance the recorded clock time by a
specified clock value
clock_Gt(): Is a clock value greater than another?
clock-Ge(): Is a clock value greater than or equal to

clock_Gt(): Are two clock values equal?
clock_Le(): Ts a clock value less than or equal to another?

clock_Zero(): Set a clock value to zero
clock-Add(): Add two clock values together
clock_Sub(): Subtract two clock values
clock_Float(): Convert a clock time into floating point

4.4 The rr_event Package

Table of Contents

52

52

52
53
53
93
93
53
54

o4

%)
95
55
56
o6
o6
o6
96

56

57

57
o7

o7
o7
o7
o8
o8
o8
o8
o8
38

iv August 28, 1991 10:38

Rx Specification

441 struct rxevent 29
4.4.2 Operations 59
4.4.2.1 rzevent_Init(): Initialize the event package 59
4.4.2.2 rxevent_Post(): Schedule an event 60

4.4.2.3 rzevent_Cancel_1(): Cancel an event (internal use) . . . 60
4.4.2.4 rzevent_Cancel(): Cancel an event (external use) 60
4.4.2.5 rzevent_RaiseFEvents(): Initialize the event package . . . 61
4.4.2.6 rzevent-TimeToNextEvent(): Get amount of time until

the next event expires 61

5 Programming Interface oL 62
5.1 Introduction 62
5.2 Comstants L 62
5.2.1 Configuration Quantities 63
5.2.2 Waiting Options 64
5.2.3 Connection ID Operations 65
5.2.4 Connection Flags 65
5.2.5 Connection Types 65
5.2.6 Call States 66
52.7 Call Flags 66
52.8 Call Modes 67
5.2.9 Packet Header Flags 67
5.2.10 Packet Sizes 68
5.2.11 Packet Types 69
5.2.12 Packet Classes 70
5.2.13 Conditions Prompting Ack Packets 71
5.2.14 Acknowledgement Types 71
5.2.15 Error Codes 72
5.2.16 Debugging Values 72
5.2.16.1 Version Information 72

5.2.16.2 Opcodes 73

5.2.16.3 Queuingo 74

5.3 Structures. 74
5.3.1 Security Objects. 75
5.3.1.1 struct rx_securityOps 75

5.3.1.2 struct rx.securityClass 76

5.3.1.3 struct rx_securityObjectStats 77

5.3.2 Protocol Objects 78
5.3.2.1 struct rx.service 78

5.3.2.2 struct rx_commnection 79

5.3.2.3 struct rxpeer 81

Table of Contents 4 August 28, 1991 10:38

Rx Specification

0.3.24 struct rx.call L. 82

5.3.3 Packet Formatso 85
5.3.3.1 struct rxheader. 85
0.3.3.2 struct rxpacket. L. 86
50.3.3.3 struct rx.ackPacket. 87

5.3.4 Debugging and Statistics 88
0.3.4.1 struct rx.stats Lo 88
5.3.4.2 struct rxdebugIn 89
0.3.4.3 struct rx.debugStats 90
5.3.44 struct rxdebugConn. 90
5.3.4.5 struct rxdebugConn.vL 91

5.4 Exported Variableso 92
54.1 rxconnDeadTime 92
5.4.2 rxdidleConnectionTime 92
5.4.3 rxddlePeerTime oo 92
54.4 rxextraQuotao 93
5.4.5 rxextraPackets.o oo 93
54.6 rxmPackets oo 93
5.4.7 rxmnFreePacketso o oo 93
54.8 rxsstackSize oL Lo 94
54.9 rxpacketTypes 94
5.4.10 rxsstats Lo 94
5.5 Macros . ..o 94
5.5.1 Field Selections/Assignments 95
5.5.1.1 rz_ConnectionOf() 95

5.5.1.2 rz_PeerOf(). 96

5.5.1.3 rz_HostOf() 96

5.5.1.4 rz_PortOf() 96

5.5.1.5 rz_GetLocalStatus() 96

5.5.1.6 rz_SetLocalStatus() 97

5.5.1.7 rz_GetRemoteStatus() 97

5.5.1.8 rz_Error() 97

5.5.1.9 rz_DataOf() 97
5.5.1.10 rz_GetDataSize(). 98
5.5.1.11 rz_SetDataSize() 98
5.5.1.12 rz_GetPacketCksum() 98
5.5.1.13 rz_SetPacketCksum() 99
5.5.1.14 rz_GetRock() 99
5.5.1.15 rz_SetRock() 99
5.5.1.16 rz_SecurityClassOf() 99
5.5.1.17 rz_SecurityObjectOf() 100

Table of Contents vi August 28, 1991 10:38

Rx Specification

5.5.2 Boolean Operations 100
5.5.2.1 rz_IsServerConn() oL, 100
5.5.2.2 rx_IsClientConn() 100
5.5.2.3 rr_IsUsingPktCksum() 101
5.5.3 Service Attributeso 101
5.5.3.1 rz_SetStackSize().o 101
5.5.3.2 rz_SetMinProcs() 102
5.5.3.3 rz_SetMaxProcs() 102
5.5.3.4 rz_SetldleDeadTime() 102
5.5.3.5 rz_SetServiceDeadTime() 103
5.5.3.6 rz_SetRxDeadTime() 103
5.5.3.7 rz_SetConnDeadTime() 103
5.5.3.8 rz_SetConnHardDeadTime() 104
5.5.3.9 rz_GetBeforeProc() 104
5.5.3.10 rz_SetBeforeProc() 105
5.5.3.11 rz_GetAfterProc() 105
5.5.3.12 rz_SetAfterProc() 106
5.5.3.13 rz_SetNewConnProc() 106
5.5.3.14 rz_SetDestroyConnProc() 106
5.5.4 Security-Related Operations 107
5.5.4.1 rz_GetSecurityHeaderSize() 107
5.5.4.2 rz_SetSecurityHeaderSize() 107
5.5.4.3 re_GetSecurityMaxTrailerSize() 108
5.5.4.4 rz_SetSecurityMaxTrailerSize() 108
5.5.5 Sizing Operations 108
5.5.5.1 rz_UserDataOf() 109
5.5.5.2 rz_MaxUserDataSize() 109
5.5.6 Complex Operations 109
5.5.6.1 rzRead() 110
5.5.6.2 rx_Write() 110
5.5.7 Security Operation Invocations 111
5.5.7.1 RXS.OP() 111
5.5.7.2 RXS_Close() 112
5.5.7.3 RXS_NewConnection() 112
5.5.7.4 RXS_PreparePacket() 112
5.5.7.5 RXS_SendPacket(). 113
5.5.7.6 RXS_CheckAuthentication() 114
5.5.7.7 RXS_CreateChallenge() 114
5.5.7.8 RXS_GetChallenge() 115
5.5.7.9 RXS_GetResponse() 115
5.5.7.10 RXS_CheckResponse() 116

Table of Contents vii August 28, 1991 10:38

Rx Specification

5.5.7.11 RXS_CheckPacket() 116

5.5.7.12 RXS_DestroyConnection() 117

5.5.7.13 RXS_GetStats() 117

5.6 Functions 118
5.6.1 Exported Operations, 118
56.2 rxnit. ... 118
5.6.3 rxNewService 119
5.6.4 rxNewConnection, 120
5.6.5 rxNewCall 121
5.6.6 rxEndCall 121
5.6.7 rx_StartServer 122
5.6.8 rx PrintStats 123
5.6.9 rx_PrintPeerStats 124
5.6.10 rx_Finalize 124
5.6.11 Semi-Exported Operations 125
5.6.12 rx_WriteProco 125
5.6.13 rx_ReadProc 126
5.6.14 rx_FlushWrite 126
5.6.15 rx_SetArrivalProc 127

6 Example Server and Client 128
6.1 Introduction 128
6.2 Human-Generated Files 129
6.2.1 Interface File: rzdemo.xg 129
6.2.2 Client Program: rxdemo_client.c 132
6.2.3 Server Program: rzdemo_server.c 138
6.24 Makefile. 145

6.3 Computer-Generated Files. 147
6.3.1 Client-Side Routines: rzdemo.cs.c 147
6.3.2 Server-Side Routines: rzdemo.ss.c 151
6.3.3 External Data Rep File: rzdemo.xdr.c 154

6.4 Sample Output 155

Table of Contents viii August 28, 1991 10:38

Rx Specification

Chapter 1

Overview

1.1 Introduction

The Rx package provides a high-performance, multi-threaded, and secure mechanism by
which remote procedure calls (RPCs) may be performed between programs executing
anywhere in a network of computers. The Rx protocol is adaptive, conforming itself
to widely varying network communication media. It allows user applications to define
and insert their own security modules, allowing them to execute the precise end-to-end
authentication algorithms required to suit their needs and goals. Although pervasive
throughout the AFS distributed file system, all of its agents, and many of its standard
application programs, Rz is entirely separable from AFS and does not depend on any
of its features. In fact, Rx can be used to build applications engaging in RPC-style
communication under a variety of UNIX-style file systems. There are in-kernel and user-
space implementations of the Rz facility, with both sharing the same interface.

This document provides a comprehensive and detailed treatment of the Rz RPC package.

1.2 Basic Concepts

The Rx design operates on the set of basic concepts described in this section.

Overview 1 August 28, 1991 10:38

Rx Specification

1.2.1 Security

The Rz architecture provides for tight integration between the RPC mechanism and
methods for making this communication medium secure. As elaborated in Section 5.3.1.3
and illustrated by the built-in rzkad security system described in Chapter 3, Rx defines
the format for a generic security module, and then allows application programmers to
define and activate instantiations of these modules. Rz itself knows nothing about the
internal details of any particular security model, or the module-specific state it requires.
It does, however, know when to call the generic security operations, and so can easily
execute the security algorithm defined. Rz does maintain basic state per connection on
behalf of any given security class.

1.2.2 Services

An Ra-based server exports services, or specific RPC interfaces that accomplish certain
tasks. Services are identified by (host-address, UDP-port, serviceID) triples. An Rz
service is installed and initialized on a given host through the use of the rz_NewService()
routine (See Section 5.6.3). Incoming calls are stamped with the Rz service type, and
must match an installed service to be accepted. Internally, Rz services also carry string
names which identify them, which is useful for remote debugging and statistics-gathering
programs. The use of a service ID allows a single server process to export multiple,
independently-specified Rz RPC services.

Each Rx service contains one or more security classes, as implemented by individual
security objects. These security objects implement end-to-end security protocols. Indi-
vidual peer-to-peer connections established on behalf of an Rz service will select exactly
one of the supported security objects to define the authentication procedures followed
by all calls associated with the connection. Applications are not limited to using only
the core set of built-in security objects offered by Rz. They are free to define their own
security objects in order to execute the specific protocols they require.

It is possible to specify both the minimum and maximum number of lightweight processes
available to handle simultaneous calls directed to an Rz service. In addition, certain
procedures may be registered with the service and called at specific times in the course
of handling an RPC request.

Overview 2 August 28, 1991 10:38

Rx Specification

1.2.3 Connections

An Rz connection represents an authenticated communication path, allowing a sequence
of multiple asynchronous conversations (calls). Each connection is identified by a con-
nection ID. The low-order bits of the connection ID are reserved so that they may be
stamped with the index of a particular call channel. With up to RX_MAXCALLS concurrent
calls (set to 4 in this implementation), the bottom two bits are set aside for this pur-
pose. The connection ID is not sufficient to uniquely identify an Rz connection by itself.
Should a client crash and restart, it may reuse a connection ID, causing inconsistent
results. Included with the connection ID is the epoch, or start time for the client side
of the connection. After a crash, the next incarnation of the client will choose a different
epoch value. This will differentiate the new incarnation from the orphaned connection
record on the server side.

Each connection is associated with a parent service, which defines a set of supported se-
curity models. At creation time, an Rz connection selects the particular security protocol
it will implement, referencing the associated service. The connection structure maintains
state for each individual call simultaneously handled.

1.2.4 Peers

For each connection, Rx maintains information describing the entity, or peer, on the
other side of the wire. A peer is identified by a (host, UDP-port) pair, with an IP address
used to identify the host. Included in the information kept on this remote communication
endpoint are such network parameters as the maximum packet size supported by the
host, current readings on round trip time and retransmission delays, and packet skew
(see Section 1.2.7). There are also congestion control fields, including retransmission
statistics and descriptions of the maximum number of packets that may be sent to the
peer without pausing. Peer structures are shared between connections whenever possible,
and, hence, are reference-counted. A peer object may be garbage-collected if it is not
actively referenced by any connection structure and a sufficient period of time has lapsed
since the reference count dropped to zero.

1.2.5 Calls

An Rz call represents an individual RPC being executed on a given connection. As
described above, each connection may have up to RK_.MAXCALLS calls active at any one
instant. The information contained in each call structure is specific to the given call.

Overview 3 August 28, 1991 10:38

Rx Specification

“Permanent” call state, such as the call number, is maintained in the connection structure
itself.

1.2.6 Quotas

Each attached server thread must be able to make progress to avoid system deadlock.
The Rz facility ensures that it can always handle the arrival of the next unacknowledged
data packet for an attached call with its system of packet quotas. A certain number
of packets are reserved per server thread for this purpose, allowing the server threads to
queue up an entire window full of data for an active call and still have packet buffers left
over to be able to read its input without blocking.

1.2.7 Packet Skew

If a packet is received n packets later than expected (based on packet serial numbers),
then we define it to have a skew of n. The maximum skew values allow us to decide
when a packet hasn’t been received yet because it is out of order, as opposed to when it
is likely to have been dropped.

1.2.8 Multicasting

The rx_multi.c module provides for multicast abilities, sending an RPC to several targets
simultaneously. While true multicasting is not achieved, it is simulated by a rapid
succession of packet transmissions and a collection algorithm for the replies. A client
program, though, may be programmed as if multicasting were truly taking place. Thus,
Rz is poised to take full advantage of a system supporting true multicasting with minimal
disruption to the existing client code base.

1.3 Scope

This paper is a member of a documentation suite providing specifications as to the
operation and interfaces offered by the various AFS servers and agents. Rz is an integral
part of the AFS environment, as it provides the high-performance, secure pathway by
which these system components communicate across the network. Although AFS is

Overview 4 August 28, 1991 10:38

Rx Specification

dependent on Rz’s services, the reverse is not true. Rz is a fully independent RPC
package, standing on its own and usable in other environments.

The intent of this work is to provide readers with a sufficiently detailed description of
Rz that they may proceed to write their own applications on top of it. In fact, code for
a sample Rz server and client are provided.

One topic related to Rx will not be covered by this document, namely the Rxgen stub
generator. Rather, rrgen is addressed in a separate document.

1.4 Document Layout

After this introduction, Chapter 2 will introduce and describe various facilities and tools
that support Rz. In particular, the threading and locking packages used by Rz will
be examined, along with a set of timer and preemption tools. Chapter 3 proceeds to
examine the details of one of the built-in security modules offered by Rz. Based on the
Kerberos system developed by MIT’s Project Athena, this rzkad module allows secure,
ecrypted communication between the server and client ends of the RPC. Chapter 5 then
provides the full Rz programming interface, and Chapter 6 illustrates the use of this
programming interface by providing a fully-operational programming example employing
Rx. This rzdemo suite is examined in detail, ranging all the way from a step-by-step
analysis of the human-authored files, and the Rzgen-generated files upon which they are
based, to the workings of the associated Makefile. Output from the example rzdemo
server and client is also provided.

1.5 Related Documents

Titles for the full suite of AFS specification documents are listed below. All of the servers
and agents making up the AFS computing environment, whether running in the UNIX
kernel or in user space, utilize an Rz RPC interface through which they export their
services.

e AFS-3 Programmer’s Reference: Architectural Overview: This paper provides an
architectual overview of the AFS distributed file system, describing the full set of
servers and agents in a coherent way, illustrating their relationships to each other
and examining their interactions.

Overview 5 August 28, 1991 10:38

Rx Specification

o AFS-3 Programmer’s Reference: File Server/Cache Manager Interface: This docu-
ment describes the workings and interfaces of the two primary AFS agents, the File
Server and Cache Manager. The File Server provides a centralized disk repository
for sets of files, regulating access to them. End users sitting on client machines
rely on the Cache Manager agent, running in their kernel, to act as their agent in
accessing the data stored on File Server machines, making those files appear as if
they were really housed locally.

o AFS-8 Programmer’s Reference: Volume Server/Volume Location Server Interface:
This document describes the services through which “containers” of related user
data are located and managed.

e AFS-3 Programmer’s Reference: Protection Server Interface: This paper describes
the server responsible for mapping printable user names to and from their internal
AFS identifiers. The Protection Server also allows users to create, destroy, and

manipulate “groups” of users, which are suitable for placement on access control
lists (ACLs).

o AFS-3 Programmer’s Reference: BOS Server Interface: This paper explicates the
“nanny” service which assists in the administrability of the AFS environment.

In addition to these papers, the AFS 3.1 product is delivered with its own user, system
administrator, installation, and command reference documents.

Overview 6 August 28, 1991 10:38

Rx Specification

Chapter 2

The LWP Lightweight Process
Package

2.1 Introduction

This chapter describes a package allowing multiple threads of control to coexist and co-
operate within one UNIX process. Each such thread of control is also referred to as a
lightweight process, in contrast to the traditional UNIX (heavyweight) process. Except for
the limitations of a fixed stack size and non-preemptive scheduling, these lightweight pro-
cesses possess all the properties usually associated with full-fledged processes in typical
operating systems. For the purposes of this document, the terms lightweight process,
LWP, and thread are completely interchangeable, and they appear intermixed in this
chapter. Included in this lightweight process facility are various sub-packages, including
services for locking, 1/O control, timers, fast time determination, and preemption.

The Rz facility is not the only client of the LWP package. Other LWP clients within
AFS include the File Server, Protection Server, BOS Server, Volume Server, Volume
Location Server, and the Authentication Server, along with many of the AFS application
programs.

The LWP Lightweight Process Package 7 August 28, 1991 10:38

Rx Specification

2.2 Description

2.2.1 LWP Overview

The LWP package implements primitive functions that provide the basic facilities re-
quired to enable procedures written in C to execute concurrently and asynchronously.
The LWP package is meant to be general-purpose (note the applications mentioned
above), with a heavy emphasis on simplicity. Interprocess communication facilities can
be built on top of this basic mechanism and in fact, many different IPC mechanisms
could be implemented.

In order to set up the threading support environment, a one-time invocation of the
LWP_Initialize ProcessSupport() function must precede the use of the facilities described
here. This initialization function carves an initial process out of the currently executing C
procedure and returns its thread ID. For symmetry, an LWP_TerminateProcessSupport()
function may be used explicitly to release any storage allocated by its counterpart.
If this function is used, it must be issued from the thread created by the original
LWP_Initialize ProcessSupport() invocation.

When any of the lightweight process functions completes, an integer value is returned to
indicate whether an error condition was encountered. By convention, a return value of
zero indicates that the operation succeeded.

Macros, typedefs, and manifest constants for error codes needed by the threading mech-
anism are exported by the lwp.h include file. A lightweight process is identified by an
object of type PROCESS, which is defined in the include file.

The process model supported by the LWP operations is based on a non-preemptive pri-
ority dispatching scheme. A priority is an integer in the range [0..LWP_MAX PRIORITY],
where 0 is the lowest priority. Once a given thread is selected and dispatched, it remains
in control until it voluntarily relinquishes its claim on the CPU. Control may be relin-
quished by either explicit means (LWP_DispatchProcess()) or implicit means (through
the use of certain other LWP operations with this side effect). In general, all LWP oper-
ations that may cause a higher-priority process to become ready for dispatching preempt
the process requesting the service. When this occurs, the dispatcher mechanism takes
over and automatically schedules the highest-priority runnable process. Routines in this
category, where the scheduler is guaranteed to be invoked in the absence of errors, are:

o LWP_WauaitProcess()
o LWP_MuwaitProcess()

The LWP Lightweight Process Package 8 August 28, 1991 10:38

Rx Specification

e LWP_SignalProcess()
e LWP_DispatchProcess()
e LWP_DestroyProcess()

The following functions are guaranteed not to cause preemption, and so may be issued
with no fear of losing control to another thread:

o LWP_InitializeProcessSupport()
e LWP_NoYieldSignal()

o LWP_CurrentProcess()

e LWP_ActiveProcess()

o LWP_StackUsed()

o LWP_NewRock()

o LWP_GetRock()

The symbol LWP_NORMAL PRIORITY, whose value is (LWP_MAX PRIORITY-2), provides a
reasonable default value to use for process priorities.

The 1lwp_debug global variable can be set to activate or deactivate debugging messages
tracing the flow of control within the LWP routines. To activate debugging messages,
set lwp_debug to a non-zero value. To deactivate, reset it to zero. All debugging output
from the LWP routines is sent to stdout.

The LWP package checks for stack overflows at each context switch. The variable that
controls the action of the package when an overflow occurs is lwp_overflowAction. If
it is set to LWP_SOMESSAGE, then a message will be printed on stderr announcing the
overflow. If lwp_overflowAction is set to LWP_SOABORT, the abort() LWP routine will
be called. Finally, if lwp_overflowAction is set to LWP_SOQUIET, the LWP facility will
ignore the errors. By default, the LWP_SOABORT setting is used.

Here is a sketch of a simple program (using some psuedocode) demonstrating the high-
level use of the LWP facility. The opening #include line brings in the exported LWP
definitions. Following this, a routine is defined to wait on a “queue” object until some-
thing is deposited in it, calling the scheduler as soon as something arrives. Please note
that various LWP routines are introduced here. Their definitions will appear later, in
Section 2.3.1.

The LWP Lightweight Process Package 9 August 28, 1991 10:38

Rx Specification

#include <afs/lwp.h>

static read_process(id)

int *id;
{
/%
* Just relinquish control for now
*/
LWP_DispatchProcess() ;
for (5;5) {
/*
* Wait until there is something in the queue
*/
while (empty(q))
LWP_WaitProcess(q);
/%
* Process the newly-arrived queue entry
*/
LWP_DispatchProcess();
}
}

The next routine, write_process(), sits in a loop, putting messages on the shared queue
and signalling the reader, which is waiting for activity on the queue. Signalling a thread
is accomplished via the LWP_SignalProcess() library routine.

static write_process()

{
/*
* Loop, writing data to the shared queue.
*/
for (mesg = messages; *mesg != 0; mesg++) {
insert(q, *mesg);
LWP_SignalProcess(q) ;
X
}

Finally, here is the main routine for this demo pseudocode. It starts by calling the
LWP initialization routine. Next, it creates some number of reader threads with calls to
LWP_CreateProcess() in addition to the single writer thread. When all threads terminate,
they will signal the main routine on the done variable. Once signalled, the main routine
will reap all the threads with the help of the LWP_DestroyProcess() function.

The LWP Lightweight Process Package 10 August 28, 1991 10:38

Rx Specification

main(argc, argv)
int argc;
char **argv;

{
PROCESS *id; /*Initial thread IDx/
/%
* Set up the LWP package, create the initial thread ID.
*/
LWP_InitializeProcessSupport(0, &id);
/%
* Create a set of reader threads.
*/
for (i = 0; i < nreaders; i++)
LWP_CreateProcess(read_process,
STACK_SIZE,
0,
i,
"Reader",
&readers[il);
/*
* Create a single writer thread.
*/
LWP_CreateProcess(write_process,
STACK_SIZE,
1)
0,
"Writer",
&writer);
/%
* Wait for all the above threads to terminate.
*/
for (i = 0; i <= nreaders; i++)
LWP_WaitProcess(&done) ;
/%
* All threads are done. Destroy them all.
*/
for (i = nreaders-1; i >= 0; i--)
LWP_DestroyProcess(readers[i]);
}

2.2.2 Locking

The LWP locking facility exports a number of routines and macros that allow a C pro-
grammer using LWP threading to place read and write locks on shared data structures.

The LWP Lightweight Process Package 11 August 28, 1991 10:38

Rx Specification

This locking facility was also written with simplicity in mind.

In order to invoke the locking mechanism, an object of type struct Lock must be associ-
ated with the object. After being initialized with a call to LockInit (), the lock object is
used in invocations of various macros, including ObtainReadLock(), ObtainWriteLock(),
ReleaseReadLock(), ReleaseWriteLock(), ObtainSharedLock(), ReleaseSharedLock(), and
BoostSharedLock().

Lock semantics specify that any number of readers may hold a lock in the absence of
a writer. Only a single writer may acquire a lock at any given time. The lock package
guarantees fairness, legislating that each reader and writer will eventually obtain a given
lock. However, this fairness is only guaranteed if the priorities of the competing processes
are identical. Note that ordering is not guaranteed by this package.

Shared locks are read locks that can be “boosted” into write locks. These shared locks
have an unusual locking matrix. Unboosted shared locks are compatible with read locks,
yet incompatible with write locks and other shared locks. In essence, a thread holding a
shared lock on an object has effectively read-locked it, and has the option to promote it
to a write lock without allowing any other writer to enter the critical region during the
boost operation itself.

It is illegal for a process to request a particular lock more than once without first releasing
it. Failure to obey this restriction will cause deadlock. This restriction is not enforced
by the LWP code.

Here is a simple pseudocode fragment serving as an example of the available locking oper-
ations. It defines a struct Vnode object, which contains a lock object. The get_vnode()
routine will look up a struct Vnode object by name, and then either read-lock or write-
lock it.

As with the high-level LWP example above, the locking routines introduced here will be
fully defined later, in Section 2.3.2.

#include <afs/lock.h>
struct Vnode {

étfuét Lock lock; /* Used to lock this vnode */
};

#define READ 0
#define WRITE 1

struct Vnode *get_vnode(name, how)
char *name;

The LWP Lightweight Process Package 12 August 28, 1991 10:38

Rx Specification

int how;

struct Vnode *v;

v = lookup(name) ;
if (how == READ)
ObtainReadLock (&v->1lock) ;
else
ObtainWriteLock (&v->1lock) ;

2.2.3 IOMGR

The IOMGR facility associated with the LWP service allows threads to wait on various
UNIX events. The exported IOMGR_Select() routine allows a thread to wait on the same
set of events as the UNIX select() call. The parameters to these two routines are identical.
TIOMGR_Select() puts the calling LWP to sleep until no threads are active. At this point,
the built-in IOMGR thread, which runs at the lowest priority, wakes up and coalesces all of
the select requests together. It then performs a single select() and wakes up all threads
affected by the result.

The IOMGR_Signal() routine allows an LWP to wait on the delivery of a UNIX signal.
The I0OMGR thread installs a signal handler to catch all deliveries of the UNIX signal. This
signal handler posts information about the signal delivery to a global data structure.
The next time that the IOMGR thread runs, it delivers the signal to any waiting LWP.

Here is a pseudocode example of the use of the IOMGR facility, providing the blueprint
for an implemention a thread-level socket listener.

void rpc_SocketListener ()

{
int ReadfdMask, WritefdMask, ExceptfdMask, rc;
struct timeval *tvp;

while (TRUE) {

ExceptfdMask = ReadfdMask = (1 << rpc_RequestSocket);
WritefdMask = 0;

rc = IOMGR_Select(8*sizeof (int),
&ReadfdMask,
&WritefdMask,
&ExceptfdMask,

The LWP Lightweight Process Package 13 August 28, 1991 10:38

Rx Specification

tvp) ;

switch(rc) {
case O: /*Timeout*/
continue; /*Main while loop*/

case -1: /*Errorx/
SystemError ("IOMGR_Select");
exit(-1);

case 1: /*RPC packet arrived!x*/
. process packet . . .
break;

default: /*Should never occur*/

2.2.4 Timer

The timer package exports a number of routines that assist in manipulating lists of
objects of type struct TM_Elem. These struct TM_Elem timers are assigned a timeout
value by the user and inserted in a package-maintained list. The time remaining to each
timer’s timeout is kept up to date by the package under user control. There are routines
to remove a timer from its list, to return an expired timer from a list, and to return the
next timer to expire.

A timer is commonly used by inserting a field of type struct TM_Elem into a structure.
After setting the desired timeout value, the structure is inserted into a list by means of
its timer field.

Here is a simple pseudocode example of how the timer package may be used. After
calling the package initialization function, T'M_Init(), the pseudocode spins in a loop.
First, it updates all the timers via TM_Rescan() calls. Then, it pulls out the first expired
timer object with TM_GetExpired() (if any), and processes it.

static struct TM_Elem *requests;

TM_Init(&requests); /*Initialize timer listx*/

The LWP Lightweight Process Package 14 August 28, 1991 10:38

Rx Specification

for (;;) {
TM_Rescan(requests); /* Update the timers x*/
expired = TM_GetExpired(requests);
if (expired == 0)

break;

. process expired element . . .

2.2.5 Fast Time

The fast time routines allows a caller to determine the current time of day without
incurring the expense of a kernel call. It works by mapping the page of the kernel that
holds the time-of-day variable and examining it directly. Currently, this package only
works on Suns. The routines may be called on other architectures, but they will run
more slowly.

The initialization routine for this package is fairly expensive, since it does a lookup of
a kernel symbol via nlist(). If the client application program only runs for only a short
time, it may wish to call FT_Init() with the notReally parameter set to TRUE in order
to prevent the lookup from taking place. This is useful if you are using another package
that uses the fast time facility.

2.2.6 Preemption

The preemption package provides a mechanism by which control can pass between
lightweight processes without the need for explicit calls to LWP_DispatchProcess(). This
effect is achieved by periodically interrupting the normal flow of control to check if other
(higher priority) procesess are ready to run.

The package makes use of the BSD interval timer facilities, and so will cause programs
that make their own use of these facilities to malfunction. In particular, use of alarm(3) or
explicit handling of SIGALRM is disallowed. Also, calls to sleep(8) may return prematurely.

Care should be taken that routines are re-entrant where necessary. In particular, note
that stdio(3) is not re-entrant in general, and hence multiple threads performing I/O on
the same FILE structure may function incorrectly.

An example pseudocode routine illustrating the use of this preemption facility appears
below.

The LWP Lightweight Process Package 15 August 28, 1991 10:38

Rx Specification

#include <sys/time.h>

#include "preempt.h"
struct timeval tv;
LWP_InitializeProcessSupport(...);
tv.tv_sec = 10;
tv.tv_usec = 0;
PRE_InitPreempt (&tv);
PRE_PreemptMe () ;
PRE_BeginCritical();
PRE_EndCritical();

PRE_EndPreempt () ;

2.3 Interface Specifications

2.3.1 LWP

This section covers the calling interfaces to the LWP package. Please note that LWP
macros (e.g., ActiveProcess) are also included here, rather than being relegated to a
different section.

2.3.1.1 LWP InitializeProcessSupport — Initialize the LWP package

int LWP _InitializeProcessSupport(IN int priority;
OUT PROCESS #*pid)

Description

This function initializes the LWP package. In addition, it turns the current thread of
control into the initial process with the specified priority. The process ID of this initial
thread is returned in the pid parameter. This routine must be called before any other

The LWP Lightweight Process Package 16 August 28, 1991 10:38

Rx Specification

routine in the LWP library. The scheduler will NOT be invoked as a result of calling
LWP_Initialize ProcessSupport().

Error Codes

LWP_EBADPRI The given priority is invalid, either negative or too large.

2.3.1.2 LWP _TerminateProcessSupport — End process support, per-
form cleanup

int LWP_TerminateProcessSupport ()

Description

This routine terminates the LWP threading support and cleans up after it by freeing any
auxiliary storage used. This routine must be called from within the process that invoked
LWP_Initialize ProcessSupport(). After LWP_TerminateProcessSupport()has been called,
it is acceptable to call LWP_InitializeProcessSupport() again in order to restart LWP
process support.

Error Codes

--— Always succeeds, or performs an abort().

2.3.1.3 LWP _CreateProcess — Create a new thread

int LWP_CreateProcess(IN int (*ep)();
IN int stacksize;

IN int priority;

The LWP Lightweight Process Package 17 August 28, 1991 10:38

Rx Specification

IN char *parm;
IN char *name;
OUT PROCESS #*pid)

Description

This function is used to create a new lightweight process with a given printable name.
The ep argument identifies the function to be used as the body of the thread. The
argument to be passed to this function is contained in parm. The new thread’s stack
size in bytes is specified in stacksize, and its execution priority in priority. The pid
parameter is used to return the process ID of the new thread.

If the thread is successfully created, it will be marked as runnable. The scheduler is called
before the LWP_CreateProcess() call completes, so the new thread may indeed begin its
execution before the completion. Note that the new thread is guaranteed NOT to run
before the call completes if the specified priority is lower than the caller’s. On the
other hand, if the new thread’s priority is higher than the caller’s, then it is guaranteed
to run before the creation call completes.

Error Codes

LWP_EBADPRI The given priority is invalid, either negative or too large.
LWP_NOMEM Could not allocate memory to satisfy the creation request.

2.3.1.4 LWP DestroyProcess — Create a new thread

int LWP _DestroyProcess(IN PROCESS pid)

Description

This routine destroys the thread identified by pid. It will be terminated immediately,
and its internal storage will be reclaimed. A thread is allowed to destroy itself. In this

The LWP Lightweight Process Package 18 August 28, 1991 10:38

Rx Specification
case, of course, it will only get to see the return code if the operation fails. Note that a
thread may also destroy itself by returning from the parent C routine.

The scheduler is called by this operation, which may cause an arbitrary number of threads
to execute before the caller regains the processor.

Error Codes

LWP_EINIT The LWP package has not been initialized.

2.3.1.5 LWP _ WaitProcess — Wait on an event

int LWP_WaitProcess(IN char *event)

Description

This routine puts the thread making the call to sleep until another LWP calls the
LWP_SignalProcess() or LWP_NoYieldSignal() routine with the specified event. Note
that signalled events are not queued. If a signal occurs and no thread is awakened, the
signal is lost. The scheduler is invoked by the LWP_WaitProcess() routine.

Error Codes

LWP_EINIT The LWP package has not been initialized.
LWP_EBADEVENT The given event pointer is null.

2.3.1.6 LWP MwaitProcess — Wait on a set of events

int LWP_MwaitProcess(IN int wcount;
IN char *evlist[])

The LWP Lightweight Process Package 19 August 28, 1991 10:38

Rx Specification

Description

This function allows a thread to wait for wcount signals on any of the items in the given
evlist. Any number of signals of a particular event are only counted once. The evlist
is a null-terminated list of events to wait for. The scheduler will be invoked.

Error Codes

LWP_EINIT The LWP package has not been initialized.
LWP_EBADCOUNT An illegal number of events has been supplied.

2.3.1.7 LWP SignalProcess — Signal an event

int LWP _SignalProcess(IN char *event)

Description

This routine causes the given event to be signalled. All threads waiting for this event
(exclusively) will be marked as runnable, and the scheduler will be invoked. Note
that threads waiting on multiple events via LWP_MuwaitProcess() may not be marked
as runnable. Signals are not queued. Therefore, if no thread is waiting for the signalled
event, the signal will be lost.

Error Codes

LWP_EINIT The LWP package has not been initialized.
LWP_EBADEVENT A null event pointer has been provided.
LWP_ENOWAIT No thread was waiting on the given event.

The LWP Lightweight Process Package 20 August 28, 1991 10:38

Rx Specification

2.3.1.8 LWP_NoYieldSignal — Signal an event without invoking scheduler

int LWP_NoYieldSignal (IN char *event)

Description

This function is identical to LWP_SignalProcess() except that the scheduler will not be
invoked. Thus, control will remain with the signalling process.

Error Codes

LWP_EINIT The LWP package has not been initialized.
LWP_EBADEVENT A null event pointer has been provided.
LWP_ENOWAIT No thread was waiting on the given event.

2.3.1.9 LWP DispatchProcess — Yield control to the scheduler

int LWP _DispatchProcess()

Description

This routine causes the calling thread to yield voluntarily to the LWP scheduler. If no
other thread of appropriate priority is marked as runnable, the caller will continue its
execution.

Error Codes

LWP_EINIT The LWP package has not been initialized.

The LWP Lightweight Process Package 21 August 28, 1991 10:38

Rx Specification

2.3.1.10 LWP _CurrentProcess — Get the current thread’s ID

int LWP_CurrentProcess(IN PROCESS *pid)

Description

This call places the current lightweight process ID in the pid parameter.

Error Codes

LWP_EINIT The LWP package has not been initialized.

2.3.1.11 LWP _ActiveProcess — Get the current thread’s ID (macro)

int LWP_ActiveProcess()

Description

This macro’s value is the current lightweight process ID. It generates a value identical
to that acquired by calling the LWP_CurrentProcess() function described above if the
LWP package has been initialized. If no such initialization has been done, it will return
a value of zero.

2.3.1.12 LWP_StackUsed - Calculate stack usage

The LWP Lightweight Process Package 22 August 28, 1991 10:38

Rx Specification

int LWP_StackUsed (IN PROCESS pid;
OUT int *max;

OUT int *used)

Description

This function returns the amount of stack space allocated to the thread whose identifier
is pid, and the amount actually used so far. This is possible if the global variable
lwp_stackUseEnabled was TRUE when the thread was created (it is set this way by
default). If so, the thread’s stack area was initialized with a special pattern. The
memory still stamped with this pattern can be determined, and thus the amount of
stack used can be calculated. The max parameter is always set to the thread’s stack
allocation value, and used is set to the computed stack usage if lwp_stackUseEnabled
was set when the process was created, or else zero.

Error Codes

LWP_NO_STACK Stack usage was not enabled at thread creation time.

2.3.1.13 LWP_NewRock - Establish thread-specific storage

int LWP_NewRock(IN int tag;

IN char **value)

Description

This function establishes a “rock”, or thread-specific information, associating it with the
calling LWP. The tag is intended to be any unique integer value, and the value is a
pointer to a character array containing the given data.

Users of the LWWP package must coordinate their choice of tag values. Note that a tag’s
value cannot be changed. Thus, to obtain a mutable data structure, another level of
indirection is required. Up to MAXROCKS (4) rocks may be associated with any given
thread.

The LWP Lightweight Process Package 23 August 28, 1991 10:38

Rx Specification

Error Codes

LWP_EBADROCK A rock with the given tag field already exists.
LWP_ENOROCKS All of the MAXROCKS are in use.

2.3.1.14 LWP_GetRock —— Retrieve thread-specific storage

int LWP_GetRock(IN int tag;
OUT **value)

Description

This routine recovers the thread-specific information associated with the calling process
and the given tag, if any. Such a rock had to be established through a LWP_NewRock()
call. The rock’s value is deposited into value.

Error Codes

LWP_EBADROCK A rock has not been associated with the given tag for this thread.

2.3.2 Locking

This section covers the calling interfaces to the locking package. Many of the user-callable
routines are actually implemented as macros.

2.3.2.1 Lock_Init - Initialize lock structure

void Lock_Init(IN struct Lock *lock)

The LWP Lightweight Process Package 24 August 28, 1991 10:38

Rx Specification

Description

This function must be called on the given lock object before any other operations can
be performed on it.

Error Codes

--— No value is returned.

2.3.2.2 ObtainReadLock — Acquire a read lock

void ObtainReadLock(IN struct Lock *lock)

Description

This macro obtains a read lock on the specified lock object. Since this is a macro and
not a function call, results are not predictable if the value of the lock parameter is a
side-effect producing expression, as it will be evaluated multiple times in the course of
the macro interpretation.

Read locks are incompatible with write, shared, and boosted shared locks.

Error Codes

-—— No value is returned.

2.3.2.3 ObtainWriteLock — Acquire a write lock

void ObtainWriteLock (IN struct Lock *lock)

The LWP Lightweight Process Package 25 August 28, 1991 10:38

Rx Specification

Description

This macro obtains a write lock on the specified lock object. Since this is a macro and
not a function call, results are not predictable if the value of the lock parameter is a
side-effect producing expression, as it will be evaluated multiple times in the course of
the macro interpretation.

Write locks are incompatible with all other locks.

Error Codes

--— No value is returned.

2.3.2.4 ObtainSharedLock — Acquire a shared lock

void ObtainSharedLock(IN struct Lock *lock)

Description

This macro obtains a shared lock on the specified lock object. Since this is a macro and
not a function call, results are not predictable if the value of the lock parameter is a
side-effect producing expression, as it will be evaluated multiple times in the course of
the macro interpretation.

Shared locks are incompatible with write and boosted shared locks, but are compatible
with read locks.
Error Codes

--— No value is returned.

The LWP Lightweight Process Package 26 August 28, 1991 10:38

Rx Specification

2.3.2.5 ReleaseReadLock — Release read lock

void ReleaseReadLock(IN struct Lock *lock)

Description

This macro releases the specified lock. The 1ock must have been previously read-locked.
Since this is a macro and not a function call, results are not predictable if the value of
the lock parameter is a side-effect producing expression, as it will be evaluated multiple
times in the course of the macro interpretation. The results are also unpredictable if the
lock was not previously read-locked by the thread calling ReleaseReadLock().

Error Codes

--— No value is returned.

2.3.2.6 ReleaseWriteLock — Release write lock

void ReleaseWriteLock (IN struct Lock *lock)

Description

This macro releases the specified lock. The 1ock must have been previously write-locked.
Since this is a macro and not a function call, results are not predictable if the value of
the lock parameter is a side-effect producing expression, as it will be evaluated multiple
times in the course of the macro interpretation. The results are also unpredictable if the
lock was not previously write-locked by the thread calling Release WriteLock().

Error Codes

-—— No value is returned.

The LWP Lightweight Process Package 27 August 28, 1991 10:38

Rx Specification

2.3.2.7 ReleaseSharedLock — Release shared lock

void ReleaseSharedLock(IN struct Lock *lock)

Description

This macro releases the specified 1lock. The lock must have been previously share-locked.
Since this is a macro and not a function call, results are not predictalbe if the value of
the 1lock parameter is a side-effect producing expression, as it will be evaluated multiple
times in the course of the macro interpretation. The results are also unpredictable if the
lock was not previously share-locked by the thread calling ReleaseSharedLock().

Error Codes

-—— No value is returned.

2.3.2.8 CheckLock — Determine state of a lock

void CheckLock(IN struct Lock *lock)

Description

This macro produces an integer that specifies the status of the indicated lock. The value
will be -1 if the lock is write-locked, 0 if unlocked, or otherwise a positive integer that
indicates the number of readers (threads holding read locks). Since this is a macro and
not a function call, results are not predictable if the value of the lock parameter is a
side-effect producing expression, as it will be evaluated multiple times in the course of
the macro interpretation.

The LWP Lightweight Process Package 28 August 28, 1991 10:38

Rx Specification

Error Codes

--— No value is returned.

2.3.2.9 BoostLock — Boost a shared lock

void BoostLock(IN struct Lock *lock)

Description

This macro promotes (“boosts”) a shared lock into a write lock. Such a boost operation
guarantees that no other writer can get into the critical section in the process. Since this
is a macro and not a function call, results are not predictable if the value of the lock
parameter is a side-effect producing expression, as it will be evaluated multiple times in
the course of the macro interpretation.

Error Codes

--— No value is returned.

2.3.2.10 UnboostLock — Unboost a shared lock

void UnboostLock (IN struct Lock *lock)

The LWP Lightweight Process Package 29 August 28, 1991 10:38

Rx Specification

Description

This macro demotes a boosted shared lock back down into a regular shared lock. Such
an unboost operation guarantees that no other writer can get into the critical section in
the process. Since this is a macro and not a function call, results are not predictable
if the value of the lock parameter is a side-effect producing expression, as it will be
evaluated multiple times in the course of the macro interpretation.

Error Codes

--— No value is returned.

2.3.3 IOMGR

This section covers the calling interfaces to the I/O management package.

2.3.3.1 ITOMGR _Initialize — Initialize the package

int IOMGR _Initialize ()

Description

This function initializes the IOMGR package. Its main task is to create the IOMGR
thread itself, which runs at the lowest possible priority (0). The remainder of the
lightweight processes must be running at priority 1 or greater (up to a maximum of
LWP_MAX_PRIORITY (4)) for the JOMGR package to function correctly.

Error Codes

-1 The LWP and/or timer package haven’t been initialized.
<misc> Any errors that may be returned by the LWP_CreateProcess() routine.

The LWP Lightweight Process Package 30 August 28, 1991 10:38

Rx Specification

2.3.3.2 TOMGR_Finalize — Clean up the IOMGR facility

int IOMGR _Finalize()

Description

This routine cleans up after the IOMGR package when it is no longer needed. It releases
all storage and destroys the JOMGR thread itself.

Error Codes

<misc> Any errors that may be returned by the LWP_DestroyProcess() routine.

2.3.3.3 TOMGR Select — Perform a thread-level select()

int IOMGR_Select (IN int numfds;
IN int *rfds;
IN int *wfds;
IN int *xfds;

IN struct timeval *timeout)

Description

This routine performs an LWP version of UNIX select() operation. The parameters have
the same meanings as with the UNIX call. However, the return values will be simplified
(see below). If this is a polling select (i.e., the value of timeout is null), it is done and
the JOMGR_Select() function returns to the user with the results. Otherwise, the calling
thread is put to sleep. If at some point the JOMGR thread is the only runnable process,
it will awaken and collect all select requests. The IOMGR will then perform a single
select and awaken the appropriate processes. This will force a return from the affected
IOMGR_Select() calls.

The LWP Lightweight Process Package 31 August 28, 1991 10:38

Rx Specification

Error Codes

-1 An error occurred.
0 A timeout occurred.

1 Some number of file descriptors are ready.

2.3.3.4 TOMGR Signal — Associate UNIX and LWP signals

int I()BA(EI{,Singﬂ(IN int signo;

IN char *event)

Description

This function associates an LWP signal with a UNIX signal. After this call, when the
given UNIX signal signo is delivered to the (heavyweight UNIX) process, the IOMGR
thread will deliver an LWP signal to the event via LWP_NoYieldSignal(). This wakes
up any lightweight processes waiting on the event. Multiple deliveries of the signal
may be coalesced into one LWP wakeup. The call to LWP_No YieldSignal() will happen
synchronously. It is safe for an LWP to check for some condition and then go to sleep
waiting for a UNIX signal without having to worry about delivery of the signal happening
between the check and the call to LWP_WaitProcess().

Error Codes

LWP_EBADSIG The signo value is out of range.
LWP_EBADEVENT The event pointer is null.

2.3.3.5 IOMGR _CancelSignal — Cancel unix and LWP signal association

The LWP Lightweight Process Package 32 August 28, 1991 10:38

Rx Specification

int IOMGR _CancelSignal (IN int signo)

Description

This routine cancels the association between a UNIX signal and an LWP event. After
calling this function, the UNIX signal signo will be handled however it was handled
before the corresponding call to JOMGR_Signal().

Error Codes

LWP_EBADSIG The signo value is out of range.

2.3.3.6 TOMGR_Sleep - Sleep for a given period

void IOMGR _Sleep (IN unsigned seconds)

Description

This function calls IOMGR_Select() with zero file descriptors and a timeout structure
set up to cause the thread to sleep for the given number of seconds.

Error Codes

-—— No value is returned.

2.3.4 Timer

This section covers the calling interface to the timer package associated with the LWP
facility.

The LWP Lightweight Process Package 33 August 28, 1991 10:38

Rx Specification

2.3.4.1 TM Init — Initialize a timer list

int TM _Init(IN struct TM Elem **list)

Description

This function causes the specified timer 1ist to be initialized. TM_Init() must be called
before any other timer operations are applied to the list.

Error Codes

-1 A null timer list could not be produced.

2.3.4.2 TM_Final — Clean up a timer list

int TM_Final(IN struct TM_Elem **list)

Description

This routine is called when the given empty timer list is no longer needed. All storage
associated with the list is released.

Error Codes

-1 The list parameter is invalid.

The LWP Lightweight Process Package 34 August 28, 1991 10:38

Rx Specification

2.3.4.3 TM_Insert — Insert an object into a timer list

void TM_Insert (IN struct TM_Elem **list;
IN struct TM_Elem *elem)

Description

This routine enters an new element, elem, into the list denoted by 1ist. Before the new
element is queued, its TimeLeft field (the amount of time before the object comes due)
is set to the value stored in its TotalTime field. In order to keep TimeLeft fields current,
the T'M_Rescan() function may be used.

Error Codes

--— No return value is generated.

2.3.4.4 TM_Rescan — Update all timers in the list

int TM_Rescan(IN struct TM_Elem *1list)

Description

This function updates the TimeLeft fields of all timers on the given 1ist. This is done
by checking the time-of-day clock. Note: this is the only routine other than T'M_Init()
that updates the TimeLeft field in the elements on the list.

Instead of returning a value indicating success or failure, TM_Rescan() returns the num-
ber of entries that were discovered to have timed out.

Error Codes

--— Instead of error codes, the number of entries that were discovered to have timed
out is returned.

The LWP Lightweight Process Package 35 August 28, 1991 10:38

Rx Specification

2.3.4.5 TM _GetExpired — Returns an expired timer

struct TM_Elem *TM_GetExpired (IN struct TM_Elem *list)

Description

This routine searches the specified timer 1ist and returns a pointer to an expired timer
element from that list. An expired timer is one whose TimeLeft field is less than or
equal to zero. If there are no expired timers, a null element pointer is returned.

Error Codes

-—— Instead of error codes, an expired timer pointer is returned, or a null timer
pointer if there are no expired timer objects.

2.3.4.6 TM _GetEarliest — Returns earliest unexpired timer

struct TM_Elem *TM_GetEarliest (IN struct TM_Elem *list)

Description

This function returns a pointer to the timer element that will be next to expire on the
given 1list. This is defined to be the timer element with the smallest (positive) TimeLeft
field. If there are no timers on the list, or if they are all expired, this function will return
a null pointer.

The LWP Lightweight Process Package 36 August 28, 1991 10:38

Rx Specification

Error Codes

--- Instead of error codes, a pointer to the next timer element to expireis returned,
or a null timer object pointer if they are all expired.

2.3.4.7 TM_eql — Test for equality of two timestamps

bool TM_eql(IN struct timemval *ti;

IN struct timemval *t2)

Description

This function compares the given timestamps, t1 and t2, for equality. Note that the
function return value, bool, has been set via typedef to be equivalent to unsigned char.

Error Codes

0 If the two timestamps differ.

1 If the two timestamps are identical.

2.3.5 Fast Time

This section covers the calling interface to the fast time package associated with the
LWP facility.

2.3.5.1 FT_Init — Initialize the fast time package

int FT _Init(IN int printErrors;
IN int notReally)

The LWP Lightweight Process Package 37 August 28, 1991 10:38

Rx Specification

Description

This routine initializes the fast time package, mapping in the kernel page containing
the time-of-day variable. The printErrors argument, if non-zero, will cause any errors
in initalization to be printed to stderr. The notReally parameter specifies whether
initialization is really to be done. Other calls in this package will do auto-initialization,
and hence the option is offered here.

Error Codes

-1 Indicates that future calls to FT_GetTimeOfDay() will still work, but will not
be able to access the information directly, having to make a kernel call every
time.

2.3.5.2 FT_GetTimeOfDay - Initialize the fast time package

int FT_GetTimeOfDay (IN struct timeval *tv;

IN struct timezone *tz)

Description
This routine is meant to mimic the parameters and behavior of the UNIX gettimeofday()

function. However, as implemented, it simply calls gettimeofday() and then does some
bound-checking to make sure the value is reasonable.

Error Codes

<misc> Whatever value was returned by gettimeofday() internally.

The LWP Lightweight Process Package 38 August 28, 1991 10:38

Rx Specification

2.3.6 Preemption

This section covers the calling interface to the preemption package associated with the
LWP facility.

2.3.6.1 PRE_InitPreempt - Initialize the preemption package

int PRE _InitPreempt (IN struct timeval #*slice)

Description

This function must be called to initialize the preemption package. It must appear some-
time after the call to LWP_Initialize ProcessSupport() and sometime before the first call
to any other preemption routine. The slice argument specifies the time slice size to use.
If the slice pointer is set to null in the call, then the default time slice, DEFAULTSLICE
(10 milliseconds), will be used. This routine uses the UNIX interval timer and handling
of the UNIX alarm signal, SIGALRM, to implement this timeslicing.

Error Codes

LWP_EINIT The LWP package hasn’t been initialized.
LWP_ESYSTEM Operations on the signal vector or the interval timer have failed.

2.3.6.2 PRE_EndPreempt — Finalize the preemption package

int PRE_EndPreempt()

The LWP Lightweight Process Package 39 August 28, 1991 10:38

Rx Specification

Description

This routine finalizes use of the preemption package. No further preemptions will be
made. Note that it is not necessary to make this call before exit. PRE_EndPreempt() is
provided only for those applications that wish to continue after turning off preemption.

Error Codes

LWP_EINIT The LWP package hasn’t been initialized.
LWP_ESYSTEM Operations on the signal vector or the interval timer have failed.

2.3.6.3 PRE_PreemptMe - Mark thread as preemptible

int PRE_PreemptMe(

Description

This macro is used to signify the current thread as a candidate for preemption. The
LWP_Initialize ProcessSupport() routine must have been called before PRE_PreemptMe().

Error Codes

-—— No return code is generated.

2.3.6.4 PRE BeginCritical — Enter thread critical section

int PRE_BeginCritical)

The LWP Lightweight Process Package 40 August 28, 1991 10:38

Rx Specification

Description

This macro places the current thread in a critical section. Upon return, and for as long as
the thread is in the critical section, involuntary preemptions of this LWP will no longer
occur.

Error Codes

--— No return code is generated.

2.3.6.5 PRE _EndCritical — Exit thread critical section

int PRE_EndCritical)

Description
This macro causes the executing thread to leave a critical section previously entered

via PRE_BeginCritical(). If involuntary preemptions were possible before the matching
PRE_BeginCritical(), they are once again possible.

Error Codes

-—— No return code is generated.

The LWP Lightweight Process Package 41 August 28, 1991 10:38

Rx Specification

Chapter 3

Rxkad

3.1 Introduction

The rxkad security module is offered as one of the built-in Rz authentication models.
It is based on the Kerberos system developed by MIT’s Project Athena. Readers wish-
ing detailed information regarding Kerberos design and implementation are directed to
[2]. This chapter is devoted to defining how Kerberos authentication services are made
available as Rx components, and assumes the reader has some familiarity with Kerberos.
Included are descriptions of how client-side and server-side Rx security objects (struct
rx_securityClass; see Section 5.3.1.1) implementing this protocol may be generated
by an Rz application. Also, a description appears of the set of routines available in
the associated struct rx_securityOps structures, as covered in Section 5.3.1.2. It is
strongly recommended that the reader become familiar with this section on struct
rx_securityOps before reading on.

3.2 Definitions

An important set of definitions related to the rzkad security package is provided by the
rzkad.h include file. Determined here are various values for ticket lifetimes, along with
structures for encryption keys and Kerberos principals. Declarations for the two routines
required to generate the different rzkad security objects also appear here. The two func-
tions are named rzkad_NewServerSecurityObject() and rekad_NewClientSecurityObject().
In addition, type field values, encryption levels, security index operations, and statistics
structures may be found in this file.

Rxkad 42 August 28, 1991 10:38

Rx Specification
3.3 Exported Objects

To be usable as an Rx security module, the rrkad facility exports routines to create
server-side and client-side security objects. The server authentication object is incor-
porated into the server code when calling rz_NewService(). The client authentication
object is incorporated into the client code every time a connection is established via
rz_NewConnection(). Also, in order to implement these security objects, the rzkad mod-
ule must provide definitions for some subset of the generic security operations as defined
in the appropriate struct rx securityOps variable.

3.3.1 Server-Side Mechanisms
3.3.1.1 Security Operations

The server side of the rzkad module fills in all but two of the possible routines associated
with an Rz security object, as described in Section 5.3.1.2.

static struct rx_securityOps rxkad_server_ops = {
rxkad_Close,
rxkad_NewConnection,
rxkad_PreparePacket, /*0nce per packet creation*/
0, /*Send packet (once per retrans)x*/
rxkad_CheckAuthentication,
rxkad_CreateChallenge,
rxkad_GetChallenge,
O:
rxkad_CheckResponse,
rxkad_CheckPacket, /*Check data packet*/
rxkad_DestroyConnection,
rxkad_GetStats,
3

The rzkad service does not need to take any special action each time a packet belonging
to a call in an rrkad Rz connection is physically transmitted. Thus, a routine is not
supplied for the op_SendPacket() function slot. Similarly, no preparatory work needs to
be done previous to the reception of a response packet from a security challenge, so the
op_GetResponse() function slot is also empty.

Rxkad 43 August 28, 1991 10:38

Rx Specification

3.3.1.2 Security Object

The exported routine used to generate an rrkad-specific server-side security class object is
named rzdad_NewServerSecurityObject(). 1t is declared with four parameters, as follows:

struct rx_securityClass *
rxkad_NewServerSecurityObject(a_level, a_getKeyRockP, a_getKeyP, a_user(0KP)

rxkad_level a_level; /*Minimum levelx*/

char *xa_getKeyRockP; /*Rock for get_key implementorx*/
int (*a_getKeyP) (); /*Passed kvno & addr(key) to fillx/
int (*a_userOKP) (); /*Passed name, inst, cell => boolx*/

The first argument specifies the desired level of encryption, and may take on the following
values (as defined in rzkad.h):

e rxkad_clear: Specifies that packets are to be sent entirely in the clear, without
any encryption whatsoever.

e rxkad_auth: Specifies that packet sequence numbers are to be encrypted.

e rxkad crypt: Specifies that the entire data packet is to be encrypted.

The second and third parameters represent, respectively, a pointer to a private data
area, sometimes called a “rock”, and a procedure reference that is called with the key
version number accompanying the Kerberos ticket and returns a pointer to the server’s
decryption key. The fourth argument, if not null, is a pointer to a function that will be
called for every new connection with the client’s name, instance, and cell. This routine
should return zero if the user is not acceptable to the server.

3.3.2 Client-Side Mechanisms
3.3.2.1 Security Operations

The client side of the rzkad module fills in relatively few of the routines associated with
an Rx security object, as demonstrated below. The general Rz security object, of which
this is an instance, is described in detail in Section 5.3.1.2.

static struct rx_securityOps rxkad_client_ops = {
rxkad_Close,

Rxkad 44 August 28, 1991 10:38

Rx Specification

rxkad_NewConnection, /*Every new connectionx/
rxkad_PreparePacket, /*0nce per packet creationx/

0, /*Send packet (once per retrans)x*/
O:

O)

O’

rxkad_GetResponse, /*Respond to challenge packet*/

O)

rxkad_CheckPacket, /*Check data packet*/

rxkad_DestroyConnection,
rxkad_GetStats,

};

As expected, routines are defined for use when someone destroys a security object
(rzkad-Close()) and when an Rx connection using the rzkad model creates a new connec-
tion (rzkad_NewConnection()) or deletes an existing one (rzkad_DestroyConnection()).
Security-specific operations must also be performed in behalf of rzkad when packets are
created (rzkad_PreparePacket()) and received (rzkad-CheckPacket()). Finally, the client
side of an rzkad security object must also be capable of constructing responses to security
challenges from the server (rzkad_GetResponse()) and be willing to reveal statistics on
its own operation (rzkad-GetStats()).

3.3.2.2 Security Object

The exported routine used to generate an rzkad-specific client-side security class object
is named rzkad_NewClientSecurityObject(). 1t is declared with five parameters, specified
below:

struct rx_securityClass *
rxkad_NewClientSecurityObject(a_level, a_sessionKeyP, a_kvno,
a_ticketLen, a_ticketP)

rxkad_level a_level;
struct ktc_encryptionKey *a_sessionKeyP;
long a_kvno;

int a_ticketLen;
char *a_ticketP;

The first parameter, a_level, specifies the level of encryption desired for this security
object, with legal choices being identical to those defined for the server-side security
object described in Section 3.3.1.2. The second parameter, a_sessionKeyP, provides the
session key to use. The ktc_encryptionKey structure is defined in the rzkad.h include

Rxkad 45 August 28, 1991 10:38

Rx Specification

file, and consists of an array of 8 characters. The third parameter, a kvno, provides the
key version number associated with a_sessionKeyP. The fourth argument, a_ticketLen,
communicates the length in bytes of the data stored in the fifth parameter, a_ticketP,
which points to the Kerberos ticket to use for the principal for which the security object
will operate.

Rxkad 46 August 28, 1991 10:38

Rx Specification

Chapter 4

Rx Support Packages

4.1 Introduction

This chapter documents three packages defined directly in support of the Rz facility.

1. rx_queue: Doubly-linked queue package.
2. rx_clock: Clock package, using the 4.3BSD interval timer.

3. rx_event: Future events package.

References to constants, structures, and functions defined by these support packages will
appear in the following API chapter.

4.2 The rz_queue Package

This package provides a doubly-linked queue structure, along with a full suite of related
operations. The main concern behind the coding of this facility was efficiency. All
functions are implemented as macros, and it is suggested that only simple expressions
be used for all parameters.

The rz_queue facility is defined by the rz_queue.h include file. Some macros visible in
this file are intended for rz_queue internal use only. An understanding of these “hidden”
macros is important, so they will also be described by this document.

Rz Support Packages A7 August 28, 1991 10:38

Rx Specification

4.2.1 struct queue

The queue structure provides the linkage information required to maintain a queue of
objects. The queue structure is prepended to any user-defined data type which is to be
organized in this fashion.

Fields

struct queue *prev - Pointer to the previous queue header.

struct queue *next - Pointer to the next queue header.

Note that a null Rz queue consists of a single struct queue object whose next and
previous pointers refer to itself.

4.2.2 Internal Operations

This section describes the internal operations defined for Rz queues. They will be refer-
enced by the external operations documented in Section 4.2.3.

4.2.2.1 _Q(): Coerce type to a queue element

#define _Q(x) ((struct queue *)(x))

This operation coerces the user structure named by x to a queue element. Any user
structure using the rz_queue package must have a struct queue as its first field.

4.2.2.2 _QA(): Add a queue element before/after another element

#define _QA(q,i,a,b) (((i->a=q->a)->b=i)->b=q, gq->a=i)

This operation adds the queue element referenced by i either before or after a queue
element represented by q. If the (a, b) argument pair corresponds to an element’s
(next, prev) fields, the new element at i will be linked after q. If the (a, b) argument
pair corresponds to an element’s (prev, next) fields, the new element at i will be linked
before q.

Rz Support Packages 48 August 28, 1991 10:38

Rx Specification

4.2.2.3 _QR(): Remove a queue element

#define _QR(i) ((_Q(i)->prev->next=_Q(i)->next)->prev=_Q(i)->prev)

This operation removes the queue element referenced by i from its queue. The prev and
next fields within queue element i itself is not updated to reflect the fact that it is no
longer part of the queue.

4.2.2.4 _@QS5(): Splice two queues together

#define _QS(ql,q2,a,b) if (queue_IsEmpty(q2)); else
((((g2->a->b=ql) ->a->b=q2->b)->a=ql->a, ql->a=q2->a),
queue_Init(q2))

This operation takes the queues identified by q1 and g2 and splices them together into
a single queue. The order in which the two queues are appended is determined by the a
and b arguments. If the (a, b) argument pair corresponds to ql’s (next, prev) fields,
then g2 is appended to q1. If the (a, b) argument pair corresponds to ql’s (prev,
next) fields, then q is prepended to g2.

This internal _@QS() routine uses two exported queue operations, namely queue_Init() and
queue_IsEmpty(), defined in Sections 4.2.3.1 and 4.2.3.16 respectively below.

4.2.3 External Operations
4.2.3.1 queue_Init(): Initialize a queue header

#define queue_Init(q) (_Q(g))->prev = (_Q(q))->next = (_Q(q))

The queue header referred to by the q argument is initialized so that it describes a null
(empty) queue. A queue head is simply a queue element.

4.2.3.2 queue_Prepend(): Put element at the head of a queue

#define queue_Prepend(q,i) _QA(_Q(q),_Q(i),next,prev)

Place queue element i at the head of the queue denoted by q. The new queue element,
i, should not currently be on any queue.

Rz Support Packages 49 August 28, 1991 10:38

Rx Specification

4.2.3.3 queue_Append(): Put an element a the tail of a queue

#define queue_Append(q,i) _QA(_Q(q),_Q(i),prev,next)

Place queue element i at the tail of the queue denoted by q. The new queue element, i,
should not currently be on any queue.

4.2.3.4 queue_InsertBefore(): Insert a queue element before another element

#define queue_InsertBefore(il,i2) _QA(_Q(i1),_Q(i2),prev,next)

Insert queue element i2 before element i1 in i1’s queue. The new queue element, i2,
should not currently be on any queue.

4.2.3.5 queue_InsertAfter(): Insert a queue element after another element

#define queue_InsertAfter(il,i2) _QA(_Q(il1),_Q(i2) ,next,prev)

Insert queue element i2 after element il in il’s queue. The new queue element, i2,
should not currently be on any queue.

4.2.3.6 queue_SplicePrepend(): Splice one queue before another

#define queue_SplicePrepend(ql,q2) _QS(_Q(ql),_Q(g2) ,next,prev)

Splice the members of the queue located at g2 to the beginning of the queue located at
ql, reinitializing queue q2.
4.2.3.7 queue_SpliceAppend(): Splice one queue after another

#define queue_SpliceAppend(ql,q2) _QS(_Q(ql),_Q(g2),prev,next)

Splice the members of the queue located at q2 to the end of the queue located at q1,
reinitializing queue q2. Note that the implementation of queue_SpliceAppend() is identi-
cal to that of queue_SplicePrepend() except for the order of the next and prev arguments
to the internal queue splicer, _QS().

Rz Support Packages 50 August 28, 1991 10:38

Rx Specification

4.2.3.8 queue_Replace(): Replace the contents of a queue with that of another

#define queue_Replace(ql,q2) (*x_Q(ql) = *_Q(q2),
_Q(q1)->next->prev = _Q(ql)->prev->next = _Q(ql),
queue_Init(q2))

Replace the contents of the queue located at q1 with the contents of the queue located
at q2. The prev and next fields from g2 are copied into the queue object referenced
by qi1, and the appropriate element pointers are reassigned. After the replacement has
occurred, the queue header at g2 is reinitialized.

4.2.3.9 queue_Remove(): Remove an element from its queue

#define queue_Remove(i) (_QR(i), _Q(i)->next = 0)

This function removes the queue element located at i from its queue. The next field for
the removed entry is zeroed. Note that multiple removals of the same queue item are
not supported.

4.2.3.10 queue_MoveAppend(): Move an element from its queue to the end of
another queue

#define queue_MoveAppend(q,i) (_QR(i), queue_Append(q,i))

This macro removes the queue element located at i from its current queue. Once re-
moved, the element at i is appended to the end of the queue located at q.

4.2.3.11 queue_MovePrepend(): Move an element from its queue to the head
of another queue

#define queue_MovePrepend(q,i) (_QR(i), queue_Prepend(q,i))

This macro removes the queue element located at i from its current queue. Once re-
moved, the element at i is inserted at the head fo the queue located at q.

Rz Support Packages 51 August 28, 1991 10:38

Rx Specification

4.2.3.12 queue_First(): Return the first element of a queue, coerced to a
particular type

#define queue_First(q,s) ((struct s *)_Q(q)->next)

Return a pointer to the first element of the queue located at q. The returned pointer
value is coerced to conform to the given s structure. Note that a properly coerced pointer
to the queue head is returned if q is empty.

4.2.3.13 queue_Last(): Return the last element of a queue, coerced to a par-
ticular type

#define queue_Last(q,s) ((struct s *)_Q(q)->prev)

Return a pointer to the last element of the queue located at q. The returned pointer
value is coerced to conform to the given s structure. Note that a properly coerced pointer
to the queue head is returned if q is empty.

4.2.3.14 queue_Nezt(): Return the next element of a queue, coerced to a
particular type

#define queue_Next(i,s) ((struct s *)_Q(i)->next)

Return a pointer to the queue element occuring after the element located at i. The
returned pointer value is coerced to conform to the given s structure. Note that a
properly coerced pointer to the queue head is returned if item i is the last in its queue.

4.2.3.15 queue_Prev(): Return the next element of a queue, coerced to a
particular type

#define queue_Prev(i,s) ((struct s *)_Q(i)->prev)

Return a pointer to the queue element occuring before the element located at i. The
returned pointer value is coerced to conform to the given s structure. Note that a
properly coerced pointer to the queue head is returned if item 1 is the first in its queue.

Rz Support Packages 52 August 28, 1991 10:38

Rx Specification

4.2.3.16 queue_IsEmpty(): Is the given queue empty?

#define queue_IsEmpty(q) (_Q(g)->next == _Q(q))

Return a non-zero value if the queue located at q does not have any elements in it. In
this case, the queue consists solely of the queue header at q whose next and prev fields
reference itself.

4.2.3.17 queue_IsNotEmpty(): Is the given queue not empty?

#define queue_IsNotEmpty(q) (_Q(g)->next != _Q(q))

Return a non-zero value if the queue located at q has at least one element in it other
than the queue header itself.

4.2.3.18 queue_IsOnQueue(): Is an element currently queued?

#define queue_IsOnQueue(i) (_Q(i)->next != 0)

This macro returns a non-zero value if the queue item located at i is currently a member
of a queue. This is determined by examining its next field. If it is non-null, the element
is considered to be queued. Note that any element operated on by queue_Remove()
(Section 4.2.3.9) will have had its next field zeroed. Hence, it would cause a non-zero
return from this call.

4.2.3.19 queue_IsFirst(): Is an element the first on a queue?

#define queue_IsFirst(q,i) (_Q(q)->first == _Q(i))

This macro returns a non-zero value if the queue item located at i is the first element
in the queue denoted by q.

4.2.3.20 queue_IsLast(): Is an element the last on a queue?

#define queue_IsLast(q,i) (_Q(q)->prev == _Q(i))

Rz Support Packages 53 August 28, 1991 10:38

Rx Specification

This macro returns a non-zero value if the queue item located at i is the last element in
the queue denoted by q.

4.2.3.21 queue_IsEnd(): Is an element the end of a queue?

#define queue_IsEnd(q,i) (_Q(q) == _Q(i))

This macro returns a non-zero value if the queue item located at i is the end of the
queue located at q. Basically, it determines whether a queue element in question is also
the queue header structure itself, and thus does not represent an actual queue element.
This function is useful for terminating an iterative sweep through a queue, identifying
when the search has wrapped to the queue header.

4.2.3.22 queue_Scan(): for loop test for scanning a queue in a forward direc-
tion

#define queue_Scan(q, ge, next, s)
(qe) = queue_First(q, s), next = queue_Next(qe, s);
'queue_IsEnd(q, qe);
(qe) = (next), next = queue_Next(qe, s)

This macro may be used as the body of a for loop test intended to scan through each
element in the queue located at q. The ge argument is used as the for loop variable.
The next argument is used to store the next value for ge in the upcoming loop iteration.
The s argument provides the name of the structure to which each queue element is to
be coerced. Thus, the values provided for the qe and next arguments must be of type
(struct s *).

An example of how queue_Scan() may be used appears in the code fragment below. It
declares a structure named mystruct, which is suitable for queueing. This queueable
structure is composed of the queue pointers themselves followed by an integer value. The
actual queue header is kept in demoQueue, and the currItemP and nextItemP variables
are used to step through the demoQueue. The queue_Scan() macro is used in the for loop
to generate references in currItemP to each queue element in turn for each iteration.
The loop is used to increment every queued structure’s myval field by one.

struct mystruct {
struct queue q;
int myval;

};

Rz Support Packages 54 August 28, 1991 10:38

Rx Specification

struct queue demoQueue;
struct mystruct *currItemP, *nextItemP;

for (queue_Scan(&demoQueue, currItemP, nextItemP, mystruct)) {
currItemP->myval++;

}

Note that extra initializers can be added before the body of the queue_Scan() invocation
above, and extra expressions can be added afterwards.

4.2.3.23 queue_ScanBackwards(): for loop test for scanning a queue in a reverse
direction

#define queue_ScanBackwards(q, qe, prev, s)
(qe) = queue_Last(q, s), prev = queue_Prev(qe, s);
'queue_IsEnd(q, qe);
(qe) = prev, prev = queue_Prev(qge, s)

This macro is identical to the queue_Scan() macro described above in Section 4.2.3.22
except for the fact that the given queue is scanned backwards, starting at the last item
in the queue.

4.3 The rz_clock Package

This package maintains a clock which is independent of the time of day. It uses the UNIX
4.3BSD interval timer (e.g., getitimer(), setitimer()) in TIMER_REAL mode. Its definition
and interface may be found in the rz_clock.h include file.

4.3.1 struct clock

This structure is used to represent a clock value as understood by this package. It consists
of two fields, storing the number of seconds and microseconds that have elapsed since
the associated clock_Init () routine has been called.

Rz Support Packages 55 August 28, 1991 10:38

Rx Specification

Fields

long sec - Seconds since call to clock_Init().

long usec - Microseconds since call to clock_Init().

4.3.2 clock nUpdates

The integer-valued clock nUpdates is a variable exported by the rz_clock facility. It
records the number of times the clock value is actually updated. It is bumped each time
the clock_Update Time() routine is called, as described in Section 4.3.3.2.

4.3.3 Operations
4.3.3.1 clock_Init(): Initialize the clock package

This routine uses the UNIX setitimer() call to initialize the UNIX interval timer. If the
setitimer() call fails, an error message will appear on stderr, and an exit(1) will be
executed.

4.3.3.2 clock_UpdateTime(): Compute the current time

The clock-UpdateTime() function calls the UNIX getitimer() routine in order to update
the current time. The exported clock nUpdates variable is incremented each time the
clock_Update Time() routine is called.

4.3.3.3 clock_GetTime(): Return the current clock time

This macro updates the current time if necessary, and returns the current time into the
cv argument, which is declared to be of type (struct clock *).

4.3.3.4 clock_Sec(): Get the current clock time, truncated to seconds

This macro returns the long value of the sec field of the current time. The recorded
time is updated if necessary before the above value is returned.

Rz Support Packages 56 August 28, 1991 10:38

Rx Specification

4.3.3.5 clock_ElapsedTime(): Measure milliseconds between two given clock
values

This macro returns the elapsed time in milliseconds between the two clock structure
pointers provided as arguments, cvl and cv2.

4.3.3.6 clock_Advance(): Advance the recorded clock time by a specified clock
value

This macro takes a single (struct clock *) pointer argument, cv, and adds this clock
value to the internal clock value maintined by the package.

4.3.3.7 clock_Gt(): Is a clock value greater than another?

This macro takes two parameters of type (struct clock *), a and b. It returns a non-
zero value if the a parameter points to a clock value which is later than the one pointed
to by b.

4.3.3.8 clock_Ge(): Is a clock value greater than or equal to another?

This macro takes two parameters of type (struct clock *), a and b. It returns a non-
zero value if the a parameter points to a clock value which is greater than or equal to
the one pointed to by b.

4.3.3.9 clock_Gt(): Are two clock values equal?

This macro takes two parameters of type (struct clock *), a and b. It returns a
non-zero value if the clock values pointed to by a and b are equal.

4.3.3.10 clock_Le(): Is a clock value less than or equal to another?

This macro takes two parameters of type (struct clock *), a and b. It returns a non-
zero value if the a parameter points to a clock value which is less than or equal to the
one pointed to by b.

Rz Support Packages o7 August 28, 1991 10:38

Rx Specification

4.3.3.11 clock_Lt(): Is a clock value less than another?

This macro takes two parameters of type (struct clock *), a and b. It returns a non-
zero value if the a parameter points to a clock value which is less than the one pointed
to by b.

4.3.3.12 clock_IsZero(): Is a clock value zero?

This macro takes a single parameter of type (struct clock *), c. It returns a non-zero
value if the ¢ parameter points to a clock value which is equal to zero.

4.3.3.13 clock_Zero(): Set a clock value to zero

This macro takes a single parameter of type (struct clock *), c. It sets the given
clock value to zero.

4.3.3.14 clock_Add(): Add two clock values together

This macro takes two parameters of type (struct clock *), cl and c2. It adds the
value of the time in c2 to c1. Both clock values must be positive.

4.3.3.15 clock_Sub(): Subtract two clock values

This macro takes two parameters of type (struct clock *), cl and c2. It subtracts
the value of the time in ¢2 from c1. The time pointed to by c2 should be less than the
time pointed to by c1.

4.3.3.16 clock_Float(): Convert a clock time into floating point

This macro takes a single parameter of type (struct clock *), c. It expresses the
given clock value as a floating point number.

Rz Support Packages 58 August 28, 1991 10:38

Rx Specification
4.4 The rr_event Package

This package maintains an event facility. An event is defined to be something that
happens at or after a specified clock time, unless cancelled prematurely. The clock times
used are those provided by the rz_clock facility described in Section 4.3 above. A user
routine associated with an event is called with the appropriate arguments when that event
occurs. There are some restrictions on user routines associated with such events. First,
this user-supplied routine should not cause process preemption. Also, the event passed
to the user routine is still resident on the event queue at the time of invocation. The
user must not remove this event explicitly (via an event_Cancel(), see below). Rather,
the user routine may remove or schedule any other event at this time.

The events recorded by this package are kept queued in order of expiration time, so that
the first entry in the queue corresponds to the event which is the first to expire. This
interface is defined by the rz_event.h include file.

4.4.1 struct rxevent

This structure defines the format of an Rz event record.

Fields

struct queue junk - The queue to which this event belongs.

struct clock eventTime - The clock time recording when this event comes due.
int (*func)() - The user-supplied function to call upon expiration.

char *arg - The first argument to the (*func)() function above.

char *argl - The second argument to the (*func)() function above.

4.4.2 Operations

This section covers the interface routines provided for the Rz event package.

4.4.2.1 rzevent_Init(): Initialize the event package

The rzevent_Init() routine takes two arguments. The first, nEvents, is an integer-valued
parameter which specifies the number of event structures to allocate at one time. This

Rz Support Packages 59 August 28, 1991 10:38

Rx Specification

specifies the appropriate granularity of memory allocation by the event package. The
second parameter, scheduler, is a pointer to an integer-valued function. This function is
to be called when an event is posted (added to the set of events managed by the package)
that is scheduled to expire before any other existing event.

This routine sets up future event allocation block sizes, initializes the queues used to
manage active and free event structures, and recalls that an initialization has occurred.
Thus, this function may be safely called multiple times.

4.4.2.2 rrevent_Post(): Schedule an event

This function constructs a new event based on the information included in its parameters
and then schedules it. The rzevent_Post() routine takes four parameters. The first is
named when, and is of type (struct clock *). It specifies the clock time at which the
event is to occur. The second parameter is named func and is a pointer to the integer-
valued function to associate with the event that will be created. When the event comes
due, this function will be executed by the event package. The next two arguments to
rrevent_Post() are named arg and argl, and are both of type (char *). They serve as
the two arguments thath will be supplied to the func routine when the event comes due.

If the given event is set to take place before any other event currently posted, the
scheduler routine established when the rzevent_Init() routine was called will be exe-
cuted. This gives the application a chance to react to this new event in a reasonable
way. One might expect that this scheduler routine will alter sleep times used by the
application to make sure that it executes in time to handle the new event.

4.4.2.3 rrevent_Cancel_1(): Cancel an event (internal use)

This routine removes an event from the set managed by this package. It takes a single
parameter named ev of type (struct rxevent *). The ev argument identifies the
pending event to be cancelled.

The rzevent_Cancel_1() routine should never be called directly. Rather, it should be
accessed through the rzevent_Cancel() macro, described in Section 4.4.2.4 below.

4.4.2.4 rrevent_Cancel(): Cancel an event (external use)

This macro is the proper way to call the rzevent_Cancel_1() routine described in Section
4.4.2.3 above. Like rzevent_Cancel_1(), it takes a single argument. This event ptr argu-

Rz Support Packages 60 August 28, 1991 10:38

Rx Specification

ment is of type (struct rxevent *), and identifies the pending event to be cancelled.
This macro first checks to see if event ptr is null. If not, it calls rzevent_Cancel_1()
to perform the real work. The event ptr argument is zeroed after the cancellation
operation completes.

4.4.2.5 rzevent_RaiseEvents(): Initialize the event package

This function processes all events that have expired relative to the current clock time
maintained by the event package. Each qualifying event is removed from the queue in
order, and its user-supplied routine (func()) is executed with the associated arguments.

The rzevent_Raise Events() routine takes a single output parameter named next, defined
to be of type (struct clock *). Upon completion of rzevent_Raise Events(), the relative
time to the next event due to expire is placed in next. This knowledge may be used to
calculate the amount of sleep time before more event processing is needed. If there is
no recorded event which is still pending at this point, rzevent_RaiseEvents() returns a
zeroed clock value into next.

4.4.2.6 rrevent_TimeToNextEvent(): Get amount of time until the next event
expires

This function returns the time between the current clock value as maintained by the
event package and the the next event’s expiration time. This information is placed in
the single output argument,interval, defined to be of type (struct clock *). The
rrevent_TimeToNextEvent() function returns integer-valued quantities. If there are no
scheduled events, a zero is returned. If there are one or more scheduled events, a 1 is
returned. If zero is returned, the interval argument is not updated.

Rz Support Packages 61 August 28, 1991 10:38

Rx Specification

Chapter 5

Programming Interface

5.1 Introduction

This chapter documents the API for the Rz facility. Included are descriptions of all the
constants, structures, exported variables, macros, and interface functions available to the
application programmer. This interface is identical regardless of whether the application
lives within the UNIX kernel or above it.

This chapter actually provides more information than what may be strictly considered
the Rx API. Many objects that were intended to be opaque and for Rz internal use only
are also described here. The reason driving the inclusion of this “extra” information is
that such exported Rx interface files as rz.h make these objects visible to application
programmers. It is prefereable to describe these objects here than to ignore them and
leave application programmers wondering as to their meaning.

An example application illustrating the use of this interface, showcasing code from both
server and client sides, appears in the following chapter.

5.2 Constants

This section covers the basic constant definitions of interest to the Rz application pro-
grammer. Each subsection is devoted to describing the constants falling into the following
categories:

e Configuration quantities

Programming Interface 62 August 28, 1991 10:38

Rx Specification

e Waiting options

e Connection ID operations
e Connection flags

e Connection types

e (all states

e (Call flags

e Call modes

e Packet header flags

e Packet sizes

e Packet types

e Packet classes

e Conditions prompting ack packets
o Ack types

e Error codes

e Debugging values

An attempt has been made to relate these constant definitions to the objects or routines
that utilize them.

5.2.1 Configuration Quantities

These definitions provide some basic Rz configuration parameters, including the number
of simultaneous calls that may be handled on a single connection, lightweight thread
parameters, and timeouts for various operations.

Programming Interface 63 August 28, 1991 10:38

Rx Specification

‘ Name Value ‘ Description ‘
RX_IDLE DEAD_TIME 60 Default idle dead time for con-
nections, in seconds.
RX_MAX_SERVICES 20 The maximum number of Rz

services that may be installed
within one application.
RX_PROCESS MAXCALLS 4 The maximum number of asyn-
chronous calls active simultane-
ously on any given Rz connec-
tion. This value must be set to
a power of two.
RX_DEFAULT_STACK_SIZE 16,000 Default lightweight thread stack
size, measured in bytes. This
value may be overridden by call-
ing the rz_SetStackSize() macro.
RX_PROCESS_PRIORITY LWP_NORMAL PRIORITY | This is the priority under which
an Rx thread should run. There
should not generally be any rea-
son to change this setting.
RX_CHALLENGE_TIMEQUT 2 The number of seconds before
another authentication request
packet is generated

RX_MAXACKS 255 Maximum number of individual
acknowledgements that may be
carried in an Rz acknowledge-
ment packet

5.2.2 Waiting Options

These definitions provide readable values indicating whether an operation should block
when packet buffer resources are not available.

‘ Name ‘ Value ‘ Description ‘
RX DONTWAIT 0 Wait until the associated operation completes
RX_WAIT 1 Don’t wait if the associated operation would block

Programming Interface 64 August 28, 1991 10:38

Rx Specification

5.2.3 Connection ID Operations

These values assist in extracting the call channel number from a connection identifier.
A call channel is the index of a particular asynchronous call structure within a single Rz
connection.

‘ Name | Value ‘ Description I
RX_CIDSHIFT 2 Number of bits to right-shift to isolate
a connection ID. Must be set to the log
(base two) of RX_MAXCALLS.
RX_CHANNELMASK | (RX_MAXCALLS-1) | Mask used to isolate a call channel from
a connection ID field

RX_CIDMASK (RX_CHANNELMASK) | Mask used to isolate the connection ID
from its field, masking out the call chan-
nel information

5.2.4 Connection Flags

The values defined here appear in the flags field of Rz connections, as defined by the
rx_connection structure described in Section 5.3.2.2.

Name ‘ Value ‘ Description ‘
RX_CONN_MAKECALL WAITING 1 re_MakeCall() is waiting for a channel
RX_CONN_DESTROY ME 2 Destroy this (client) connection after its

last call completes
RX_CONN_USING_PACKET_CKSUM 4 This packet is using security-related check-
summing (a non-zero header.spare field has
been seen)

5.2.5 Connection Types

Rz stores different information in its connection structures, depending on whether the
given connection represents the server side (the one providing the service) or the client
side (the one requesting the service) of the protocol. The type field within the connection
structure (described in Section 5.3.2.2) takes on the following values to differentiate the
two types of connections, and identifies the fields that are active within the connection
structure.

Programming Interface 65 August 28, 1991 10:38

Rx Specification

‘ Name ‘ Value ‘ Description

RX_CLIENT_CONNECTION 0 This is a client-side connection.
RX_SERVER_CONNECTION 1 This is a server-side connection.

5.2.6 Call States

An Rz call on a particular connection may be in one of several states at any instant in
time. The following definitions identify the range of states that a call may assume.

‘ Name ‘ Value ‘ Description ‘
RX_STATE NOTINIT 0 The call structure has never been used, and is thus still
completely uninitialized

RX_STATE PRECALL 1 A call is not yet in progress, but packets have arrived
for it anyway. This only applies to calls within server-
side connections

RX_STATE_ACTIVE 2 This call is fully active, having an attached lightweight
thread operating on its behalf
RX_STATE DALLY 3 The call structure is “dallying” after its lightweight

thread has completed its most recent call. This is a
“hot-standby” condition, where the call structure pre-
serves state from the previous call and thus optimizes
the arrival of further, related calls.

5.2.7 Call Flags

These values are used within the flags field of a variable declared to be of type struct
rx_call, as described in Section 5.3.2.4. They provide additional information as to the
state of the given Rz call, such as the type of event for which it is waiting (if any) and
whether or not all incoming packets have been received in support of the call.

Programming Interface 66 August 28, 1991 10:38

Rx Specification

‘ Name ‘ Value ‘ Description

RX_CALL READER WAIT 1 Reader is waiting for next packet

RX_CALL WAIT_WINDOW_ALLOC 2 Sender is waiting for a window so that it can
allocate buffers

RX_CALL WAIT WINDOW_SEND 4 Sender is waiting for a window so that it can
send buffers

RX_CALL _WAIT_PACKETS 8 Sender is waiting for packet buffers

RX_CALL_WAIT_PROC 16 | The call is waiting for a lightweight thread
to be assigned to the operation it has just
received

RX_CALL RECEIVE DONE 32 | All packets have been received on this call

RX_CALL_CLEARED 64 | The receive queue has been cleared when in
precall state

5.2.8 Call Modes

These values define the modes of an Rz call when it is in the RX_STATE_ACTIVE state,
having a lightweight thread assigned to it.

‘ Name ‘ Value] Description
RX_MODE_SENDING 1 We are sending or ready to send
RX_MODE_RECEIVING 2 We are receiving or ready to receive
RX_MODE_ERROR 3 Something went wrong in the current conversation
RX_MODE_EQF 4 The server side has flushed (or the client side has

read) the last reply packet

5.2.9 Packet Header Flags

Rz packets carry a flag field in their headers, providing additional information regarding
the packet’s contents. The Rz packet header’s flag field’s bits may take the following

values:

Programming Interface

67 August 28, 1991 10:38

Rx Specification

‘ Name ‘ Value ‘ Description ‘

RX_CLIENT_INITIATED | 1 Signifies that a packet has
been sent /received from the
client side of the call

RX_REQUEST_ACK 2 The Rx call’s peer entity re-
quests an acknowledgement

RX_LAST_PACKET 4 This is the final packet from
this side of the call

RX _MORE PACKETS 8 There are more packets fol-

lowing this, i.e. the next se-
quence number seen by the
receiver should be greater
than this one, rather than a
retransmission of an earlier
sequence number

RX_PRESET_FLAGS

(RX_CLIENT_INITIATED |
RX_LAST PACKET)

This flag is preset once
per Rx packet. It doesn’t
change on retransmission of
the packet

5.2.10 Packet Sizes

These values provide sizing information on the various regions within Rz packets. These
packet sections include the IP/UDP headers and bodies as well Rz header and bodies.
Also covered are such values as different maximum packet sizes depending on whether
they are targeted to peers on the same local network or a more far-flung network. Note
that the MTU term appearing below is an abbreviation for Maximum Transmission Unit.

Programming Interface

68

August 28, 1991 10:38

Rx Specification

‘ Name

‘ Value

Description

RX_IPUDP_SIZE

28

The number of bytes
taken up by IP/UDP
headers

RX_MAX_PACKET_SIZE

(1500 - RX_IPUDP _SIZE)

This is the Ethernet
MTU minus IP and
UDP header sizes

RX_HEADER _SIZE

sizeof (struct rx_header)

The number of bytes in
an Rx packet header

RX_MAX_PACKET_DATA _SIZE

(RX.MAX PACKET SIZE
RX_HEADER_SIZE)

Maximum size in bytes
of the user data in a
packet

RX_LOCAL_PACKET_SIZE

RX_MAX_PACKET_SIZE

Packet size in bytes to
use when being sent to
a host on the same net.

RX_REMOTE_PACKET_SIZE

(576 - RX_IPUDP SIZE)

Packet size in bytes to
use when being sent to
a host on a different
net.

5.2.11 Packet Types

The following values are used in the packetType field within a struct rx packet, and
define the different roles assumed by Rx packets. These roles include user data pack-
ets, different flavors of acknowledgements, busies, aborts, authentication challenges and
responses, and debugging vehicles.

Programming Interface

69

August 28, 1991 10:38

Rx Specification

‘ Name ‘ Value ‘ Description
RX_PACKET_TYPE DATA 1 A user data packet
RX_PACKET _TYPE ACK 2 Acknowledgement packet
RX_PACKET_TYPE BUSY 3 Busy packet. The server-side entity cannot

accept the call at the moment, but the re-
questor is encouraged to try again later

RX_PACKET_TYPE_ABORT 4 Abort packet. No response is needed for this
packet type

RX_PACKET _TYPE_ACKALL 5 Acknowledges receipt of all packets on a call

RX_PACKET _TYPE_CHALLENGE 6 Challenge the client’s identity, requesting
credentials

RX_PACKET_TYPE_RESPONSE 7 Response to a RX_PACKET _TYPE_CHALLENGE
authentication challenge packet.

RX_PACKET _TYPE_DEBUG 8 Request for debugging information

RX_N_PACKET_TYPES 9 The number of Rz packet types defined

above. Note that it also includes packet type
0 (which is unused) in the count

The RX_PACKET_TYPES definition provides a mapping of the above values to human-
readable string names, and is exported by the rx_packetTypes variable catalogued in
Section 5.4.9.

{"data" S
"ack" s
ubusyn s
"abort",
"ackall",
"challenge",
"response",
lldebugll

5.2.12 Packet Classes

These definitions are used internally to manage alloction of Rx packet buffers according
to quota classifications. Each packet belongs to one of the following classes, and its buffer
is derived from the corresponding pool.

Programming Interface 70 August 28, 1991 10:38

Rx Specification

‘ Name ‘ Value ‘ Description
RX_PACKET_CLASS RECEIVE 0 Receive packet for user data
RX_PACKET_CLASS_SEND 1 Send packet for user data

RX_PACKET_CLASS_SPECIAL 2 A special packet that does not holding user
data, such as an acknowledgement or authen-
tication challenge

RX_N_PACKET_CLASSES 3 The number of Rz packet classes defined above

5.2.13 Conditions Prompting Ack Packets

Rz acknowledgement packets are constructed and sent by the protocol according to the
following reasons. These values appear in the Rx packet header of the ack packet itself.

‘ Name ‘ Value ‘ Description ‘
RX_ACK_REQUESTED 1 The peer has explicitly requested an ack on this
packet
RX_ACK_DUPLICATE 2 A duplicate packet has been received

w

RX_ACK_QUT_OF _SEQUENCE A packet has arrived out of sequence
RX_ACK_EXCEEDS_WINDOW 4 A packet sequence number higher than max-
imum value allowed by the call’s window has
been received

No packet buffer space is available
Acknowledgement for keep-alive purposes
Response to a RX_ACK_PING packet

An ack generated due to a period of inactivity
after normal packet receptions

RX_ACK_NOSPACE
RX_ACK_PING
RX_ACK_PING_RESPONSE
RX_ACK_DELAY

QO 3| S| Ot

5.2.14 Acknowledgement Types

These are the set of values placed into the acks array in an Rz acknowledgement packet,
whose data format is defined by struct rx_ackPacket. These definitions are used to
convey positive or negative acknowledgements for a given range of packets.

‘ Name ‘ Value ‘ Description ‘

RX_ACK_TYPE NACK 0 Receiver doesn’t currently have the associated packet;
it may never have been received, or received and then
later dropped before processing

RX_ACK_TYPE_ACK 1 Receiver has the associated packet queued, although it
may later decide to discard it

Programming Interface 71 August 28, 1991 10:38

Rx Specification

5.2.15 Error Codes

Rz employs error codes ranging from -1 to -64. The Rzgen stub generator may use other
error codes less than -64. User programs calling on Rz, on the other hand, are expected
to return positive error codes. A return value of zero is interpreted as an indication that
the given operation completed successfully.

‘ Name ‘ Value ‘ Description ‘

RX_CALL_DEAD -1 A connection has been inactive past Rz’s tolerance
levels and has been shut down.
RX_INVALID_OPERATION -2 An invalid operation has been attempted, includ-
ing such protocol errors as having a client-side call
send data after having received the beginning of
a reply from its server-side peer

RX_CALL_TIMEOUT -3 | The (optional) timeout value placed on this call
has been exceeded (see Sections 5.5.3.4 and 5.6.5).

RX_EQF -4 Unexpected end of data on a read operation

RX_PROTOCOL_ERROR -5 An unspecified low-level Rz protocol error has
occurred

RX_USER_ABORT -6 A generic user abort code, used when no more

specific error code needs to be communicated. For
example, Rx clients employing the multicast fea-
ture (see Section 1.2.8) take advantage of this er-

ror code

RX_ADDRINUSE -7 | The given UDP port already in use (See the de-
scription of the rz_Init() function.)

RX_DEBUGI BADTYPE -8 Invalid debugging packet type was received

5.2.16 Debugging Values

Rz provides a set of data collections that convey information about its internal status
and performance. The following values have been defined in support of this debugging
and statistics-collection feature.

5.2.16.1 Version Information

Various versions of the Rz debugging/statistics interface are in existance, each defining
different data collections and handling certain bugs. Each Rz facility is stamped with
a version number of its debugging/statistics interface, allowing its clients to tailor their

Programming Interface 72 August 28, 1991 10:38

Rx Specification

requests to the precise data collections that are supported by a particular Rz entity, and
to properly interpret the data formats received through this interface. All existing Rx
implementations should be at revision M.

‘ Name ‘ Value ‘ Description ‘
RX_DEBUGI_VERSION_MINIMUM L The earliest version of Rz statis-
tics available
RX_DEBUGI_VERSION "M’ | The latest version of Rx statis-
tics available
RX_DEBUGI_VERSION_W_SECSTATS L Identifies the earliest version in

which statistics concerning Rx
security objects is available
RX_DEBUGI _VERSION_W_GETALLCONN "M’ | The first version that supports
getting

information about all current
Rx connections, as specified by
the RX_DEBUGI_GETALLCONN de-
bugging request packet opcode
described below.

RX_DEBUGI VERSION W _RXSTATS "M’ | The first version that supports
getting all the Rz statistics in
one operation, as specified by
the RX_DEBUGI RXSTATS debug-
ging request packet opcode de-
scribed below.

RX_DEBUGI VERSION W_UNALIGNED_CONN 'L’ | There was an alignment prob-
lem discovered when returning
Rx connection
information in older versions of
this debugging/statistics inter-
face. This identifies the last ver-
sion that exhibited this align-
ment problem.

5.2.16.2 Opcodes

When requesting debugging/statistics information, the caller specifies one of the follow-
ing supported data collections:

Programming Interface 73 August 28, 1991 10:38

Rx Specification

‘ Name ‘ Value ‘ Description ‘
RX_DEBUGI_GETSTATS 1 Get basic Rz statistics
RX_DEBUGI_GETCONN 2 Get information on all Rz connections consid-
ered “interesting” (as defined below), and no
others

RX_DEBUGI GETALLCONN 3 Get information on all existing Rz connection
structures, even “uninteresting” ones
RX_DEBUGI RXSTATS 4 Get all available Rz stats

An Rz connection is considered “interesting” if it is waiting for a call channel to free up
or if it has been marked for destruction. If neither is true, a connection is still considered
interesting if any of its call channels is actively handling a call or in its preparatory
pre-call state. Failing all the above conditions, a connection is still tagged as interesting
if any of its call channels is in either of the RX_ MODE_SENDING or RX_MODE RECEIVING
modes, which are not allowed when the call is not active.

5.2.16.3 Queuing

These two queueing-related values indicate whether packets are present on the incoming
and outgoing packet queues for a given Rz call. These values are only used in support
of debugging and statistics-gathering operations.

‘ Name ‘ Value ‘ Description ‘

RX_OTHER_IN 1 Packets available in in queue
RX_OTHER_OUT 2 Packets available in out queue

5.3 Structures

This section describes the major exported Rz data structures of interest to application
programmers. The following categories are utilized for the purpose of organizing the
structure descriptions:

e Security objects
e Protocol objects
e Packet formats

e Debugging and statistics

Programming Interface 74 August 28, 1991 10:38

Rx Specification
e Miscellaneous

Please note that many fields described in this section are declared to be VOID. This is
defined to be char, and is used to get around some compiler limitations.

5.3.1 Security Objects

As explained in Section 1.2.1, Rz provides a modular, extensible security model. This
allows Rz applications to either use one of the built-in security /authentication protocol
packages or write and plug in one of their own. This section examines the various struc-
tural components used by Rx to support generic security and authentication modules.

5.3.1.1 struct rx_securityOps

As previously described, each Rz security object must export a fixed set of interface func-
tions, providing the full set of operations defined on the object. The rx_securityOps
structure defines the array of functions comprising this interface. The Rz facility calls
these routines at the appropriate times, without knowing the specifics of how any par-
ticular security object implements the operation.

A complete description of these interface functions, including information regarding their
exact purpose, parameters, and calling conventions, may be found in Section 5.5.7.

Fields

int (*op_Close)() - React to the disposal of a security object.

int (*op_NewConnection)() - Invoked each time a new Rz connection utilizing the
associated security object is created.

int (*op_PreparePacket)() - Invoked each time an outgoing Rz packet is created and
sent on a connection using the given security object.

int (*op_SendPacket)() - Called each time a packet belonging to a call in a connec-
tion using the security object is physically transmitted.

int (*op_CheckAuthentication)() - This function is executed each time it is necessary
to check whether authenticated calls are being perfomed on a connection using
the associated security object.

int (*op_CreateChallenge)() - Invoked each time a server-side challenge event is
created by Rz, namely when the identity of the principal associated with the
peer process must be determined.

Programming Interface 75 August 28, 1991 10:38

Rx Specification

int (*op_GetChallenge)() - Called each time a client-side packet is constructed in
response to an authentication challenge.

int (*op_GetResponse)() - Executed each time a response to a challenge event must
be received on the server side of a connection.

int (*op_CheckResponse)() - Invoked each time a response to an authentication has
been received, validating the response and pulling out the required authenti-
cation information.

int (*op_CheckPacket) () - Invoked each time an Rz packet has been received, mak-
ing sure that the packet is properly formatted and that it hasn’t been altered.

int (*op_DestroyConnection)() - Called each time an Rx connection employing the
given security object is destroyed.

int (*op_GetStats)() - Executed each time a request for statistics on the given se-
curity object has been received.

int (*op_Spare1l)() - int (*op_Spare3)() - Three spare function slots, reserved for
future use.

5.3.1.2 struct rx_securityClass

Variables of type struct rx_securityClass are used to represent instantiations of a
particular security model employed by Rz. It consists of a pointer to the set of interface
operations implementing the given security object, along with a pointer to private storage
as necessary to support its operations. These security objects are also reference-counted,
tracking the number of Rx connections in existance that use the given security object.
If the reference count drops to zero, the security module may garbage-collect the space
taken by the unused security object.

Fields

struct rx_securityOps *ops - Pointer to the array of interface functions for the
security object.

VOID *privateData - Pointer to a region of storage used by the security object
to support its operations.

int refCount - A reference count on the security object, tracking the number of
Rz connections employing this model.

Programming Interface 76 August 28, 1991 10:38

Rx Specification

5.3.1.3 struct rx_securityObjectStats

This structure is used to report characteristics for an instantiation of a security object
on a particular Rx connection, as well as performance figures for that object. It is used
by the debugging portions of the Rx package. Every security object defines and manages
fields such as level and flags differently.

Fields

char type - The type of security object being implemented. Existing values are:

e 0: The null security package.
e 1: An obsolete Kerberos-like security object.

e 2: The rxkad discipline (see Chapter 3).

char level - The level at which encryption is utilized.
char sparec[10] - Used solely for alignment purposes.

long flags - Status flags regarding aspects of the connection relating to the security
object.

u_long expires - Absolute time when the authentication information cached by
the given connection expires. A value of zero indicates that the associated
authentication information is valid for all time.

u_long packetsReceived - Number of packets received on this particular con-
nection, and thus the number of incoming packets handled by the associated
security object.

u_long packetsSent - Number of packets sent on this particular connection, and
thus the number of outgoing packets handled by the associated security object.

u_long bytesReceived - Overall number of “payload” bytes received (i.e., packet
bytes not associated with IP headers, UDP headers, and the security module’s
own header and trailer regions) on this connection.

u_long bytesSent - Overall number of “payload” bytes sent (i.e., packet bytes
not associated with IP headers, UDP headers, and the security module’s own
header and trailer regions) on this connection.

short spares[4] - Several shortword spares, reserved for future use.

long sparel[8] - Several longword spares, reserved for future use.

Programming Interface 7 August 28, 1991 10:38

Rx Specification

5.3.2 Protocol Objects

The structures describing the main abstractions and entities provided by Rz, namely
services, peers, connections and calls are covered in this section.

5.3.2.1 struct rx_service

An Rax-based server exports services, or specific RPC interfaces that accomplish certain
tasks. Services are identified by (host-address, UDP-port, serviceID) triples. An Rz
service is installed and initialized on a given host through the use of the rz_NewService()
routine (See Section 5.6.3). Incoming calls are stamped with the Rz service type, and
must match an installed service to be accepted. Internally, Rz services also carry string
names for purposes of identification. These strings are useful to remote debugging and
statistics-gathering programs. The use of a service ID allows a single server process to
export multiple, independently-specified Rz RPC services.

Each Rzx service contains one or more security classes, as implemented by individual
security objects. These security objects implement end-to-end security protocols. Indi-
vidual peer-to-peer connections established on behalf of an Rz service will select exactly
one of the supported security objects to define the authentication procedures followed
by all calls associated with the connection. Applications are not limited to using only
the core set of built-in security objects offered by Rz. They are free to define their own
security objects in order to execute the specific protocols they require.

It is possible to specify both the minimum and maximum number of lightweight processes
available to handle simultaneous calls directed to an Rz service. In addition, certain
procedures may be registered with the service and called at set times in the course of
handling an RPC request.

Fields

u_short serviceld - The associated service number.
u_short servicePort - The chosen UDP port for this service.

char *serviceName - The human-readable service name, expressed as a character
string.

osi_socket socket - The socket structure or file descriptor used by this service.

u_short nSecurityObjects - The number of entries in the array of supported
security objects.

struct rx_securityClass **securityObjects - The array of pointers to the ser-
vice’s security class objects.

Programming Interface 78 August 28, 1991 10:38

Rx Specification

long (*executeRequestProc)() - A pointer to the routine to call when an RPC
request is received for this service.

VOID (*destroyConnProc)() - A pointer to the routine to call when one of the
server-side connections associated with this service is destroyed.

VOID (*newConnProc)() - A pointer to the routine to call when a server-side
connection associated with this service is created.

VOID (*beforeProc)() - A pointer to the routine to call before an individual
RPC call on one of this service’s connections is executed.

VOID (*afterProc)() - A pointer to the routine to call after an individual RPC
call on one of this service’s connections is executed.

short nRequestsRunning - The number of simultaneous RPC calls currently in
progress for this service.

short maxProcs - This field has two meanings. First, maxProcs limits the total
number of requests that may execute in parallel for any one service. It also
guarantees that this many requests may be handled in parallel if there are no
active calls for any other service.

short minProcs - The minimum number of lightweight threads (hence requests)
guaranteed to be simultaneously executable.

short connDeadTime - The number of seconds until a client of this service will
be declared to be dead, if it is not responding to the RPC protocol.

short idleDeadTime - The number of seconds a server-side connection for this
service will wait for packet I/O to resume after a quiescent period before the
connection is marked as dead.

5.3.2.2 struct rx_connection

An Rz connection represents an authenticated communication path, allowing multiple
asynchronous conversations (calls). Each connection is identified by a connection ID.
The low-order bits of the connection ID are reserved so they may be stamped with the
index of a particular call channel. With up to RX_MAXCALLS concurrent calls (set to 4 in
this implementation), the bottom two bits are set aside for this purpose. The connection
ID is not sufficient by itself to uniquely identify an Rz connection. Should a client crash
and restart, it may reuse a connection ID, causing inconsistent results. In addition to
the connection ID, the epoch, or start time for the client side of the connection, is used
to identify a connection. Should the above scenario occur, a different epoch value will
be chosen by the client, differentiating this incarnation from the orphaned connection
record on the server side.

Programming Interface 79 August 28, 1991 10:38

Rx Specification

Each connection is associated with a parent service, which defines a set of supported se-
curity models. At creation time, an Rz connection selects the particular security protocol
it will implement, referencing the associated service. The connection structure maintains
state about the individual calls being simultaneously handled.

Fields

struct rx_connection *next - Used for internal queueing.
struct rx_peer *peer - Pointer to the connection’s peer information (see below).
u_long epoch - Process start time of the client side of the connection.

u_long cid - Connection identifier. The call channel (i.e., the index into the con-
nection’s array of call structures) may appear in the bottom bits.

VOID *rock - Pointer to an arbitrary region of memory in support of the con-
nection’s operation. The contents of this area are opaque to the Rz facility in
general, but are understood by any special routines used by this connection.

struct rx_call *calllRX MAXCALLS] - Pointer to the call channel structures,
describing up to RX_MAXCALLS concurrent calls on this connection.

u_long callNumber[RX MAXCALLS] - The set of current call numbers on each
of the call channels.

int timeout - Obsolete; no longer used.

u_char flags - Various states of the connection; see Section 5.2.4 for individual bit
def