
Cellular Automata & Nyquist:
So Happy Together

Ann Lewis
12/05/02

Cellular Automata
•  A cellular automaton is a collection of cells on a grid.
•  Each cell evolves according to a set of rules based on

the states of adjacent (or nearby) cells.
•  One-dimensional, "elementary cellular automata," are

represented by a single row of cells/states, each can
have value 0 or 1. For a graphical automaton, 0/1
corresponds to black pixel/white pixel.

•  Two-dimensional: cells depend on at least four
neighbors. These are capable of simulating a Turing
machine for some configuration of about 200,000 cells
(Gardner 1983, p. 227). Translation: cellular automata
are very powerful.

Elementary Cellular Automata
•  The simplest class of one-dimensional cellular automata.
•  Elementary cellular automata have two possible values

for each cell (0 or 1), and rules that depend only on
parent and parent neighbor values.

•  The evolution of an elementary cellular automaton can
completely be described by a 2D table, where entry (i, j)
corresponds to state j at generation i.

•  Since there are 2*2*2 = 23 = 8 possible binary states for
the three cells neighboring a given cell, there are a total
of 28 = 256 elementary cellular automata.

Example: One-Dimensional

Example: One-Dimensional
•  Steven Wolfram enumerated

all possible elementary cellular
automata and he calls this
particular rule set Rule 30

•  Rule 30 is of special interest
because it is chaotic (Wolfram
2002, p. 871).

•  This rule is used as the
random number generator
used for large integers in
Mathematica (Wolfram 2002,
p. 317).

•  Rule 90 (next slide) is also of
interest because it generates
fractal patterns

Example #2

What does this have to do with
Nyquist?

•  Ever wonder what fractal patterns would
sound like in music?

•  Using cellular automata is a very efficient
way of generating interesting musical
patterns, because you only need to keep
track of two generations at any given time.

•  So I decided to implement a cellular
automata feature in Nyquist

Cellular Automata within Nyquist

•  Recall the one-dimensional array of states, each
of which can be either 0 or 1.

•  The musical analogy for this idea is: instead of a
row of states, you have an array of sounds. If a
state has a value of 1, this sound is “turned on”,
if 0 its “turned off.”

•  Also, assume you have chosen some method by
which you can combine turned-on sounds.

Example

•  Here is a very simple array of sounds
•  In this musical cellular automata structure, we

choose the combining function to be SUM, for
the sake of simplicity.

•  Now if states 2,3, and 6 are turned on, we would
get the Nyquist sound (sum (osc 65) (osc 67)
(osc 76)), which is just a simple chord.

•  The evolution of this automaton would be a
sequential progression of chords.

Implementation
•  I have implemented a cellular automata package in

Nyquist that allows you to use any one-dimensional
automaton on any array of sounds, using any combining
function on the activated sounds.

•  Usage: (cell-aut <num iterations> <combining function>
<sound list> <update rule>)

•  Since automata are differentiated by their evolution, or
row update rules, you can specify the automaton you
want to use just by specifying the update rule.

•  The update rule is simply a function that takes in 3 (t/nil)
values, and returns t or nil. The three input values will be
the values of the cell’s dependencies, and the output is
the current cell’s value.

Example Update Rule
•  (defun wolfram-rule-30 (arg1 arg2 arg3)
 (if (and (eq arg1 t) (eq arg2 t) (eq arg3 t)) nil)
 (if (and (eq arg1 t) (eq arg2 t) (eq arg3 nil)) nil)
 (if (and (eq arg1 t) (eq arg2 nil) (eq arg3 t)) nil)
 (if (and (eq arg1 t) (eq arg2 nil) (eq arg3 nil)) t)
 (if (and (eq arg1 nil) (eq arg2 t) (eq arg3 t)) t)
 (if (and (eq arg1 nil) (eq arg2 t) (eq arg3 nil)) t)
 (if (and (eq arg1 nil) (eq arg2 nil) (eq arg3 t)) t)
 (if (and (eq arg1 nil) (eq arg2 nil) (eq arg3 nil)) nil)
)

Example Update Rule, con’t
•  The previous slide

corresponds with this
visual implementation

•  The user can create their
own update rules

•  88 of the possible 256
update rules are known to
be fundamentally
inequivalent (Wolfram
2002, p. 57).

Example Music Created Using
Cellular Automata

•  These examples are very simple
•  The sound arrays are just arrays of

oscillators
•  The samples use Wolfram’s fractal rule

(90) and Wolfram’s chaotic rule (30)
•  Combine function is just SUM.

Future Work
•  I plan to explore more complicated examples,

including cellular automata of harmonics, and
cellular automata of cellular automata

•  How much musical structure can a cellular
automaton describe?

•  Music that is pleasant to the human ear is
sparse over the set of all possible tone
combinations over a given range of tones;
cellular automata currently does not have this
property. Can it be added?

